| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 19.8a |  |-  ( ( x = A /\ ph ) -> E. x ( x = A /\ ph ) ) | 
						
							| 2 | 1 | ex |  |-  ( x = A -> ( ph -> E. x ( x = A /\ ph ) ) ) | 
						
							| 3 |  | eqvisset |  |-  ( x = A -> A e. _V ) | 
						
							| 4 |  | alexeqg |  |-  ( A e. _V -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) | 
						
							| 5 | 3 4 | syl |  |-  ( x = A -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) | 
						
							| 6 |  | sp |  |-  ( A. x ( x = A -> ph ) -> ( x = A -> ph ) ) | 
						
							| 7 | 6 | com12 |  |-  ( x = A -> ( A. x ( x = A -> ph ) -> ph ) ) | 
						
							| 8 | 5 7 | sylbird |  |-  ( x = A -> ( E. x ( x = A /\ ph ) -> ph ) ) | 
						
							| 9 | 2 8 | impbid |  |-  ( x = A -> ( ph <-> E. x ( x = A /\ ph ) ) ) |