| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 |  |-  ( y = A -> ( x = y <-> x = A ) ) | 
						
							| 2 | 1 | anbi1d |  |-  ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) | 
						
							| 3 | 2 | exbidv |  |-  ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) | 
						
							| 4 | 1 | imbi1d |  |-  ( y = A -> ( ( x = y -> ph ) <-> ( x = A -> ph ) ) ) | 
						
							| 5 | 4 | albidv |  |-  ( y = A -> ( A. x ( x = y -> ph ) <-> A. x ( x = A -> ph ) ) ) | 
						
							| 6 |  | sbalex |  |-  ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) | 
						
							| 7 | 3 5 6 | vtoclbg |  |-  ( A e. V -> ( E. x ( x = A /\ ph ) <-> A. x ( x = A -> ph ) ) ) | 
						
							| 8 | 7 | bicomd |  |-  ( A e. V -> ( A. x ( x = A -> ph ) <-> E. x ( x = A /\ ph ) ) ) |