| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝐴 ) ) | 
						
							| 2 | 1 | anbi1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑥  =  𝑦  ∧  𝜑 )  ↔  ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 3 | 2 | exbidv | ⊢ ( 𝑦  =  𝐴  →  ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) | 
						
							| 4 | 1 | imbi1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝑥  =  𝑦  →  𝜑 )  ↔  ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 5 | 4 | albidv | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 6 |  | sbalex | ⊢ ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 7 | 3 5 6 | vtoclbg | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 ) ) ) | 
						
							| 8 | 7 | bicomd | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑥 ( 𝑥  =  𝐴  →  𝜑 )  ↔  ∃ 𝑥 ( 𝑥  =  𝐴  ∧  𝜑 ) ) ) |