Metamath Proof Explorer


Theorem ceqsexg

Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004)

Ref Expression
Hypotheses ceqsexg.1 xψ
ceqsexg.2 x=Aφψ
Assertion ceqsexg AVxx=Aφψ

Proof

Step Hyp Ref Expression
1 ceqsexg.1 xψ
2 ceqsexg.2 x=Aφψ
3 nfe1 xxx=Aφ
4 3 1 nfbi xxx=Aφψ
5 ceqex x=Aφxx=Aφ
6 5 2 bibi12d x=Aφφxx=Aφψ
7 biid φφ
8 4 6 7 vtoclg1f AVxx=Aφψ