Metamath Proof Explorer


Theorem ceqsralbv

Description: Elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020)

Ref Expression
Hypothesis ceqsrexv.1 x=Aφψ
Assertion ceqsralbv xBx=AφABψ

Proof

Step Hyp Ref Expression
1 ceqsrexv.1 x=Aφψ
2 1 notbid x=A¬φ¬ψ
3 2 ceqsrexbv xBx=A¬φAB¬ψ
4 rexanali xBx=A¬φ¬xBx=Aφ
5 annim AB¬ψ¬ABψ
6 3 4 5 3bitr3i ¬xBx=Aφ¬ABψ
7 6 con4bii xBx=AφABψ