Metamath Proof Explorer


Theorem cgrtr3

Description: Transitivity law for congruence. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion cgrtr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFCDCgrEFABCgrCD

Proof

Step Hyp Ref Expression
1 simp1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NN
2 simp21 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NA𝔼N
3 simp22 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NB𝔼N
4 simp32 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NE𝔼N
5 simp33 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NF𝔼N
6 simp23 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NC𝔼N
7 simp31 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼ND𝔼N
8 simprl NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFCDCgrEFABCgrEF
9 simprr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFCDCgrEFCDCgrEF
10 1 6 7 4 5 9 cgrcomand NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFCDCgrEFEFCgrCD
11 1 2 3 4 5 6 7 8 10 cgrtrand NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFCDCgrEFABCgrCD
12 11 ex NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFCDCgrEFABCgrCD