Metamath Proof Explorer


Theorem cgrtrand

Description: Deduction form of cgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtrand.1 φ N
cgrtrand.2 φ A 𝔼 N
cgrtrand.3 φ B 𝔼 N
cgrtrand.4 φ C 𝔼 N
cgrtrand.5 φ D 𝔼 N
cgrtrand.6 φ E 𝔼 N
cgrtrand.7 φ F 𝔼 N
cgrtrand.8 φ ψ A B Cgr C D
cgrtrand.9 φ ψ C D Cgr E F
Assertion cgrtrand φ ψ A B Cgr E F

Proof

Step Hyp Ref Expression
1 cgrtrand.1 φ N
2 cgrtrand.2 φ A 𝔼 N
3 cgrtrand.3 φ B 𝔼 N
4 cgrtrand.4 φ C 𝔼 N
5 cgrtrand.5 φ D 𝔼 N
6 cgrtrand.6 φ E 𝔼 N
7 cgrtrand.7 φ F 𝔼 N
8 cgrtrand.8 φ ψ A B Cgr C D
9 cgrtrand.9 φ ψ C D Cgr E F
10 cgrtr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D C D Cgr E F A B Cgr E F
11 1 2 3 4 5 6 7 10 syl133anc φ A B Cgr C D C D Cgr E F A B Cgr E F
12 11 adantr φ ψ A B Cgr C D C D Cgr E F A B Cgr E F
13 8 9 12 mp2and φ ψ A B Cgr E F