Metamath Proof Explorer


Theorem cgrtrand

Description: Deduction form of cgrtr . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtrand.1 ( 𝜑𝑁 ∈ ℕ )
cgrtrand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtrand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtrand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtrand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtrand.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtrand.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
cgrtrand.8 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
cgrtrand.9 ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
Assertion cgrtrand ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )

Proof

Step Hyp Ref Expression
1 cgrtrand.1 ( 𝜑𝑁 ∈ ℕ )
2 cgrtrand.2 ( 𝜑𝐴 ∈ ( 𝔼 ‘ 𝑁 ) )
3 cgrtrand.3 ( 𝜑𝐵 ∈ ( 𝔼 ‘ 𝑁 ) )
4 cgrtrand.4 ( 𝜑𝐶 ∈ ( 𝔼 ‘ 𝑁 ) )
5 cgrtrand.5 ( 𝜑𝐷 ∈ ( 𝔼 ‘ 𝑁 ) )
6 cgrtrand.6 ( 𝜑𝐸 ∈ ( 𝔼 ‘ 𝑁 ) )
7 cgrtrand.7 ( 𝜑𝐹 ∈ ( 𝔼 ‘ 𝑁 ) )
8 cgrtrand.8 ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ )
9 cgrtrand.9 ( ( 𝜑𝜓 ) → ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )
10 cgrtr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐷 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐸 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐹 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) )
11 1 2 3 4 5 6 7 10 syl133anc ( 𝜑 → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) )
12 11 adantr ( ( 𝜑𝜓 ) → ( ( ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐶 , 𝐷 ⟩ ∧ ⟨ 𝐶 , 𝐷 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ ) )
13 8 9 12 mp2and ( ( 𝜑𝜓 ) → ⟨ 𝐴 , 𝐵 ⟩ Cgr ⟨ 𝐸 , 𝐹 ⟩ )