Metamath Proof Explorer


Theorem cgrtr3and

Description: Deduction form of cgrtr3 . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrtr3and.1 φN
cgrtr3and.2 φA𝔼N
cgrtr3and.3 φB𝔼N
cgrtr3and.4 φC𝔼N
cgrtr3and.5 φD𝔼N
cgrtr3and.6 φE𝔼N
cgrtr3and.7 φF𝔼N
cgrtr3and.8 φψABCgrEF
cgrtr3and.9 φψCDCgrEF
Assertion cgrtr3and φψABCgrCD

Proof

Step Hyp Ref Expression
1 cgrtr3and.1 φN
2 cgrtr3and.2 φA𝔼N
3 cgrtr3and.3 φB𝔼N
4 cgrtr3and.4 φC𝔼N
5 cgrtr3and.5 φD𝔼N
6 cgrtr3and.6 φE𝔼N
7 cgrtr3and.7 φF𝔼N
8 cgrtr3and.8 φψABCgrEF
9 cgrtr3and.9 φψCDCgrEF
10 cgrtr3 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFCDCgrEFABCgrCD
11 1 2 3 4 5 6 7 10 syl133anc φABCgrEFCDCgrEFABCgrCD
12 11 adantr φψABCgrEFCDCgrEFABCgrCD
13 8 9 12 mp2and φψABCgrCD