Step |
Hyp |
Ref |
Expression |
1 |
|
cgrtr3and.1 |
|- ( ph -> N e. NN ) |
2 |
|
cgrtr3and.2 |
|- ( ph -> A e. ( EE ` N ) ) |
3 |
|
cgrtr3and.3 |
|- ( ph -> B e. ( EE ` N ) ) |
4 |
|
cgrtr3and.4 |
|- ( ph -> C e. ( EE ` N ) ) |
5 |
|
cgrtr3and.5 |
|- ( ph -> D e. ( EE ` N ) ) |
6 |
|
cgrtr3and.6 |
|- ( ph -> E e. ( EE ` N ) ) |
7 |
|
cgrtr3and.7 |
|- ( ph -> F e. ( EE ` N ) ) |
8 |
|
cgrtr3and.8 |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. E , F >. ) |
9 |
|
cgrtr3and.9 |
|- ( ( ph /\ ps ) -> <. C , D >. Cgr <. E , F >. ) |
10 |
|
cgrtr3 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. E , F >. /\ <. C , D >. Cgr <. E , F >. ) -> <. A , B >. Cgr <. C , D >. ) ) |
11 |
1 2 3 4 5 6 7 10
|
syl133anc |
|- ( ph -> ( ( <. A , B >. Cgr <. E , F >. /\ <. C , D >. Cgr <. E , F >. ) -> <. A , B >. Cgr <. C , D >. ) ) |
12 |
11
|
adantr |
|- ( ( ph /\ ps ) -> ( ( <. A , B >. Cgr <. E , F >. /\ <. C , D >. Cgr <. E , F >. ) -> <. A , B >. Cgr <. C , D >. ) ) |
13 |
8 9 12
|
mp2and |
|- ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) |