| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cgrtr3and.1 |  |-  ( ph -> N e. NN ) | 
						
							| 2 |  | cgrtr3and.2 |  |-  ( ph -> A e. ( EE ` N ) ) | 
						
							| 3 |  | cgrtr3and.3 |  |-  ( ph -> B e. ( EE ` N ) ) | 
						
							| 4 |  | cgrtr3and.4 |  |-  ( ph -> C e. ( EE ` N ) ) | 
						
							| 5 |  | cgrtr3and.5 |  |-  ( ph -> D e. ( EE ` N ) ) | 
						
							| 6 |  | cgrtr3and.6 |  |-  ( ph -> E e. ( EE ` N ) ) | 
						
							| 7 |  | cgrtr3and.7 |  |-  ( ph -> F e. ( EE ` N ) ) | 
						
							| 8 |  | cgrtr3and.8 |  |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. E , F >. ) | 
						
							| 9 |  | cgrtr3and.9 |  |-  ( ( ph /\ ps ) -> <. C , D >. Cgr <. E , F >. ) | 
						
							| 10 |  | cgrtr3 |  |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) /\ ( D e. ( EE ` N ) /\ E e. ( EE ` N ) /\ F e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. E , F >. /\ <. C , D >. Cgr <. E , F >. ) -> <. A , B >. Cgr <. C , D >. ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 10 | syl133anc |  |-  ( ph -> ( ( <. A , B >. Cgr <. E , F >. /\ <. C , D >. Cgr <. E , F >. ) -> <. A , B >. Cgr <. C , D >. ) ) | 
						
							| 12 | 11 | adantr |  |-  ( ( ph /\ ps ) -> ( ( <. A , B >. Cgr <. E , F >. /\ <. C , D >. Cgr <. E , F >. ) -> <. A , B >. Cgr <. C , D >. ) ) | 
						
							| 13 | 8 9 12 | mp2and |  |-  ( ( ph /\ ps ) -> <. A , B >. Cgr <. C , D >. ) |