Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> N e. NN ) |
2 |
|
simp2l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> A e. ( EE ` N ) ) |
3 |
|
simp2r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> B e. ( EE ` N ) ) |
4 |
1 2 3
|
cgrrflx2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> <. A , B >. Cgr <. B , A >. ) |
5 |
|
simp3l |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> C e. ( EE ` N ) ) |
6 |
|
simp3r |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> D e. ( EE ` N ) ) |
7 |
|
axcgrtr |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( A e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. B , A >. /\ <. A , B >. Cgr <. C , D >. ) -> <. B , A >. Cgr <. C , D >. ) ) |
8 |
1 2 3 3 2 5 6 7
|
syl133anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. A , B >. Cgr <. B , A >. /\ <. A , B >. Cgr <. C , D >. ) -> <. B , A >. Cgr <. C , D >. ) ) |
9 |
4 8
|
mpand |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. -> <. B , A >. Cgr <. C , D >. ) ) |
10 |
1 3 2
|
cgrrflx2d |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> <. B , A >. Cgr <. A , B >. ) |
11 |
|
axcgrtr |
|- ( ( N e. NN /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) /\ A e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. B , A >. Cgr <. A , B >. /\ <. B , A >. Cgr <. C , D >. ) -> <. A , B >. Cgr <. C , D >. ) ) |
12 |
1 3 2 2 3 5 6 11
|
syl133anc |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( ( <. B , A >. Cgr <. A , B >. /\ <. B , A >. Cgr <. C , D >. ) -> <. A , B >. Cgr <. C , D >. ) ) |
13 |
10 12
|
mpand |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. B , A >. Cgr <. C , D >. -> <. A , B >. Cgr <. C , D >. ) ) |
14 |
9 13
|
impbid |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ D e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , D >. <-> <. B , A >. Cgr <. C , D >. ) ) |