Metamath Proof Explorer


Theorem cgrrflx2d

Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflx2d.1
|- ( ph -> N e. NN )
cgrrflx2d.2
|- ( ph -> A e. ( EE ` N ) )
cgrrflx2d.3
|- ( ph -> B e. ( EE ` N ) )
Assertion cgrrflx2d
|- ( ph -> <. A , B >. Cgr <. B , A >. )

Proof

Step Hyp Ref Expression
1 cgrrflx2d.1
 |-  ( ph -> N e. NN )
2 cgrrflx2d.2
 |-  ( ph -> A e. ( EE ` N ) )
3 cgrrflx2d.3
 |-  ( ph -> B e. ( EE ` N ) )
4 axcgrrflx
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. )
5 1 2 3 4 syl3anc
 |-  ( ph -> <. A , B >. Cgr <. B , A >. )