Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cgrrflx2d.1 | |- ( ph -> N e. NN ) | |
| cgrrflx2d.2 | |- ( ph -> A e. ( EE ` N ) ) | ||
| cgrrflx2d.3 | |- ( ph -> B e. ( EE ` N ) ) | ||
| Assertion | cgrrflx2d | |- ( ph -> <. A , B >. Cgr <. B , A >. ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cgrrflx2d.1 | |- ( ph -> N e. NN ) | |
| 2 | cgrrflx2d.2 | |- ( ph -> A e. ( EE ` N ) ) | |
| 3 | cgrrflx2d.3 | |- ( ph -> B e. ( EE ` N ) ) | |
| 4 | axcgrrflx | |- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. ) | |
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> <. A , B >. Cgr <. B , A >. ) |