Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cgrrflx2d.1 | |- ( ph -> N e. NN ) |
|
cgrrflx2d.2 | |- ( ph -> A e. ( EE ` N ) ) |
||
cgrrflx2d.3 | |- ( ph -> B e. ( EE ` N ) ) |
||
Assertion | cgrrflx2d | |- ( ph -> <. A , B >. Cgr <. B , A >. ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgrrflx2d.1 | |- ( ph -> N e. NN ) |
|
2 | cgrrflx2d.2 | |- ( ph -> A e. ( EE ` N ) ) |
|
3 | cgrrflx2d.3 | |- ( ph -> B e. ( EE ` N ) ) |
|
4 | axcgrrflx | |- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> <. A , B >. Cgr <. B , A >. ) |