| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveecn |  |-  ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) | 
						
							| 2 |  | fveecn |  |-  ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) | 
						
							| 3 |  | sqsubswap |  |-  ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) /\ ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) | 
						
							| 5 | 4 | anandirs |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) | 
						
							| 6 | 5 | sumeq2dv |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) | 
						
							| 7 |  | id |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) | 
						
							| 8 |  | simpr |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) | 
						
							| 9 |  | simpl |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) | 
						
							| 10 |  | brcgr |  |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. B , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) ) | 
						
							| 11 | 7 8 9 10 | syl12anc |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. B , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) ) | 
						
							| 12 | 6 11 | mpbird |  |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. ) | 
						
							| 13 | 12 | 3adant1 |  |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. ) |