Metamath Proof Explorer


Theorem axcgrrflx

Description: A is as far from B as B is from A . Axiom A1 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axcgrrflx
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. )

Proof

Step Hyp Ref Expression
1 fveecn
 |-  ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC )
2 fveecn
 |-  ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC )
3 sqsubswap
 |-  ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) )
4 1 2 3 syl2an
 |-  ( ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) /\ ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) )
5 4 anandirs
 |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) )
6 5 sumeq2dv
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) )
7 id
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) )
8 simpr
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) )
9 simpl
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) )
10 brcgr
 |-  ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. B , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) )
11 7 8 9 10 syl12anc
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. B , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) )
12 6 11 mpbird
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. )
13 12 3adant1
 |-  ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. )