Step |
Hyp |
Ref |
Expression |
1 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
2 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
3 |
|
sqsubswap |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) /\ ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) |
5 |
4
|
anandirs |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) |
6 |
5
|
sumeq2dv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) |
7 |
|
id |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) ) |
8 |
|
simpr |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
9 |
|
simpl |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
10 |
|
brcgr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( B e. ( EE ` N ) /\ A e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. B , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
11 |
7 8 9 10
|
syl12anc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. B , A >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( B ` i ) - ( A ` i ) ) ^ 2 ) ) ) |
12 |
6 11
|
mpbird |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. ) |
13 |
12
|
3adant1 |
|- ( ( N e. NN /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> <. A , B >. Cgr <. B , A >. ) |