Metamath Proof Explorer


Theorem axcgrrflx

Description: A is as far from B as B is from A . Axiom A1 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axcgrrflx N A 𝔼 N B 𝔼 N A B Cgr B A

Proof

Step Hyp Ref Expression
1 fveecn A 𝔼 N i 1 N A i
2 fveecn B 𝔼 N i 1 N B i
3 sqsubswap A i B i A i B i 2 = B i A i 2
4 1 2 3 syl2an A 𝔼 N i 1 N B 𝔼 N i 1 N A i B i 2 = B i A i 2
5 4 anandirs A 𝔼 N B 𝔼 N i 1 N A i B i 2 = B i A i 2
6 5 sumeq2dv A 𝔼 N B 𝔼 N i = 1 N A i B i 2 = i = 1 N B i A i 2
7 id A 𝔼 N B 𝔼 N A 𝔼 N B 𝔼 N
8 simpr A 𝔼 N B 𝔼 N B 𝔼 N
9 simpl A 𝔼 N B 𝔼 N A 𝔼 N
10 brcgr A 𝔼 N B 𝔼 N B 𝔼 N A 𝔼 N A B Cgr B A i = 1 N A i B i 2 = i = 1 N B i A i 2
11 7 8 9 10 syl12anc A 𝔼 N B 𝔼 N A B Cgr B A i = 1 N A i B i 2 = i = 1 N B i A i 2
12 6 11 mpbird A 𝔼 N B 𝔼 N A B Cgr B A
13 12 3adant1 N A 𝔼 N B 𝔼 N A B Cgr B A