Metamath Proof Explorer


Theorem axcgrtr

Description: Congruence is transitive. Axiom A2 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axcgrtr NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDABCgrEFCDCgrEF

Proof

Step Hyp Ref Expression
1 eqtr2 i=1NAiBi2=i=1NCiDi2i=1NAiBi2=i=1NEiFi2i=1NCiDi2=i=1NEiFi2
2 simpl1 A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NA𝔼N
3 simpl2 A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NB𝔼N
4 simpl3 A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NC𝔼N
5 simpr1 A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼ND𝔼N
6 brcgr A𝔼NB𝔼NC𝔼ND𝔼NABCgrCDi=1NAiBi2=i=1NCiDi2
7 2 3 4 5 6 syl22anc A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDi=1NAiBi2=i=1NCiDi2
8 simpr2 A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NE𝔼N
9 simpr3 A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NF𝔼N
10 brcgr A𝔼NB𝔼NE𝔼NF𝔼NABCgrEFi=1NAiBi2=i=1NEiFi2
11 2 3 8 9 10 syl22anc A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrEFi=1NAiBi2=i=1NEiFi2
12 7 11 anbi12d A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDABCgrEFi=1NAiBi2=i=1NCiDi2i=1NAiBi2=i=1NEiFi2
13 brcgr C𝔼ND𝔼NE𝔼NF𝔼NCDCgrEFi=1NCiDi2=i=1NEiFi2
14 4 5 8 9 13 syl22anc A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NCDCgrEFi=1NCiDi2=i=1NEiFi2
15 12 14 imbi12d A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDABCgrEFCDCgrEFi=1NAiBi2=i=1NCiDi2i=1NAiBi2=i=1NEiFi2i=1NCiDi2=i=1NEiFi2
16 1 15 mpbiri A𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDABCgrEFCDCgrEF
17 16 3adant1 NA𝔼NB𝔼NC𝔼ND𝔼NE𝔼NF𝔼NABCgrCDABCgrEFCDCgrEF