Metamath Proof Explorer


Theorem axcgrtr

Description: Congruence is transitive. Axiom A2 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axcgrtr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D A B Cgr E F C D Cgr E F

Proof

Step Hyp Ref Expression
1 eqtr2 i = 1 N A i B i 2 = i = 1 N C i D i 2 i = 1 N A i B i 2 = i = 1 N E i F i 2 i = 1 N C i D i 2 = i = 1 N E i F i 2
2 simpl1 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A 𝔼 N
3 simpl2 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N B 𝔼 N
4 simpl3 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N C 𝔼 N
5 simpr1 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N D 𝔼 N
6 brcgr A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Cgr C D i = 1 N A i B i 2 = i = 1 N C i D i 2
7 2 3 4 5 6 syl22anc A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D i = 1 N A i B i 2 = i = 1 N C i D i 2
8 simpr2 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N E 𝔼 N
9 simpr3 A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N F 𝔼 N
10 brcgr A 𝔼 N B 𝔼 N E 𝔼 N F 𝔼 N A B Cgr E F i = 1 N A i B i 2 = i = 1 N E i F i 2
11 2 3 8 9 10 syl22anc A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr E F i = 1 N A i B i 2 = i = 1 N E i F i 2
12 7 11 anbi12d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D A B Cgr E F i = 1 N A i B i 2 = i = 1 N C i D i 2 i = 1 N A i B i 2 = i = 1 N E i F i 2
13 brcgr C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N C D Cgr E F i = 1 N C i D i 2 = i = 1 N E i F i 2
14 4 5 8 9 13 syl22anc A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N C D Cgr E F i = 1 N C i D i 2 = i = 1 N E i F i 2
15 12 14 imbi12d A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D A B Cgr E F C D Cgr E F i = 1 N A i B i 2 = i = 1 N C i D i 2 i = 1 N A i B i 2 = i = 1 N E i F i 2 i = 1 N C i D i 2 = i = 1 N E i F i 2
16 1 15 mpbiri A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D A B Cgr E F C D Cgr E F
17 16 3adant1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N E 𝔼 N F 𝔼 N A B Cgr C D A B Cgr E F C D Cgr E F