Step |
Hyp |
Ref |
Expression |
1 |
|
fveecn |
|
2 |
|
subid |
|
3 |
2
|
sq0id |
|
4 |
1 3
|
syl |
|
5 |
4
|
sumeq2dv |
|
6 |
|
fzfid |
|
7 |
|
sumz |
|
8 |
7
|
olcs |
|
9 |
6 8
|
syl |
|
10 |
5 9
|
eqtrd |
|
11 |
10
|
3ad2ant3 |
|
12 |
11
|
eqeq2d |
|
13 |
|
fzfid |
|
14 |
|
fveere |
|
15 |
14
|
adantlr |
|
16 |
|
fveere |
|
17 |
16
|
adantll |
|
18 |
15 17
|
resubcld |
|
19 |
18
|
resqcld |
|
20 |
18
|
sqge0d |
|
21 |
13 19 20
|
fsum00 |
|
22 |
|
fveecn |
|
23 |
|
fveecn |
|
24 |
|
subcl |
|
25 |
|
sqeq0 |
|
26 |
24 25
|
syl |
|
27 |
|
subeq0 |
|
28 |
26 27
|
bitrd |
|
29 |
22 23 28
|
syl2an |
|
30 |
29
|
anandirs |
|
31 |
30
|
ralbidva |
|
32 |
21 31
|
bitrd |
|
33 |
32
|
3adant3 |
|
34 |
12 33
|
bitrd |
|
35 |
|
simp1 |
|
36 |
|
simp2 |
|
37 |
|
simp3 |
|
38 |
|
brcgr |
|
39 |
35 36 37 37 38
|
syl22anc |
|
40 |
|
eqeefv |
|
41 |
40
|
3adant3 |
|
42 |
34 39 41
|
3bitr4d |
|
43 |
42
|
biimpd |
|
44 |
43
|
adantl |
|