Metamath Proof Explorer


Theorem axcgrid

Description: If there is no distance between A and B , then A = B . Axiom A3 of Schwabhauser p. 10. (Contributed by Scott Fenton, 3-Jun-2013)

Ref Expression
Assertion axcgrid N A 𝔼 N B 𝔼 N C 𝔼 N A B Cgr C C A = B

Proof

Step Hyp Ref Expression
1 fveecn C 𝔼 N i 1 N C i
2 subid C i C i C i = 0
3 2 sq0id C i C i C i 2 = 0
4 1 3 syl C 𝔼 N i 1 N C i C i 2 = 0
5 4 sumeq2dv C 𝔼 N i = 1 N C i C i 2 = i = 1 N 0
6 fzfid C 𝔼 N 1 N Fin
7 sumz 1 N 1 1 N Fin i = 1 N 0 = 0
8 7 olcs 1 N Fin i = 1 N 0 = 0
9 6 8 syl C 𝔼 N i = 1 N 0 = 0
10 5 9 eqtrd C 𝔼 N i = 1 N C i C i 2 = 0
11 10 3ad2ant3 A 𝔼 N B 𝔼 N C 𝔼 N i = 1 N C i C i 2 = 0
12 11 eqeq2d A 𝔼 N B 𝔼 N C 𝔼 N i = 1 N A i B i 2 = i = 1 N C i C i 2 i = 1 N A i B i 2 = 0
13 fzfid A 𝔼 N B 𝔼 N 1 N Fin
14 fveere A 𝔼 N i 1 N A i
15 14 adantlr A 𝔼 N B 𝔼 N i 1 N A i
16 fveere B 𝔼 N i 1 N B i
17 16 adantll A 𝔼 N B 𝔼 N i 1 N B i
18 15 17 resubcld A 𝔼 N B 𝔼 N i 1 N A i B i
19 18 resqcld A 𝔼 N B 𝔼 N i 1 N A i B i 2
20 18 sqge0d A 𝔼 N B 𝔼 N i 1 N 0 A i B i 2
21 13 19 20 fsum00 A 𝔼 N B 𝔼 N i = 1 N A i B i 2 = 0 i 1 N A i B i 2 = 0
22 fveecn A 𝔼 N i 1 N A i
23 fveecn B 𝔼 N i 1 N B i
24 subcl A i B i A i B i
25 sqeq0 A i B i A i B i 2 = 0 A i B i = 0
26 24 25 syl A i B i A i B i 2 = 0 A i B i = 0
27 subeq0 A i B i A i B i = 0 A i = B i
28 26 27 bitrd A i B i A i B i 2 = 0 A i = B i
29 22 23 28 syl2an A 𝔼 N i 1 N B 𝔼 N i 1 N A i B i 2 = 0 A i = B i
30 29 anandirs A 𝔼 N B 𝔼 N i 1 N A i B i 2 = 0 A i = B i
31 30 ralbidva A 𝔼 N B 𝔼 N i 1 N A i B i 2 = 0 i 1 N A i = B i
32 21 31 bitrd A 𝔼 N B 𝔼 N i = 1 N A i B i 2 = 0 i 1 N A i = B i
33 32 3adant3 A 𝔼 N B 𝔼 N C 𝔼 N i = 1 N A i B i 2 = 0 i 1 N A i = B i
34 12 33 bitrd A 𝔼 N B 𝔼 N C 𝔼 N i = 1 N A i B i 2 = i = 1 N C i C i 2 i 1 N A i = B i
35 simp1 A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
36 simp2 A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N
37 simp3 A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N
38 brcgr A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N A B Cgr C C i = 1 N A i B i 2 = i = 1 N C i C i 2
39 35 36 37 37 38 syl22anc A 𝔼 N B 𝔼 N C 𝔼 N A B Cgr C C i = 1 N A i B i 2 = i = 1 N C i C i 2
40 eqeefv A 𝔼 N B 𝔼 N A = B i 1 N A i = B i
41 40 3adant3 A 𝔼 N B 𝔼 N C 𝔼 N A = B i 1 N A i = B i
42 34 39 41 3bitr4d A 𝔼 N B 𝔼 N C 𝔼 N A B Cgr C C A = B
43 42 biimpd A 𝔼 N B 𝔼 N C 𝔼 N A B Cgr C C A = B
44 43 adantl N A 𝔼 N B 𝔼 N C 𝔼 N A B Cgr C C A = B