Step |
Hyp |
Ref |
Expression |
1 |
|
fveecn |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( C ` i ) e. CC ) |
2 |
|
subid |
|- ( ( C ` i ) e. CC -> ( ( C ` i ) - ( C ` i ) ) = 0 ) |
3 |
2
|
sq0id |
|- ( ( C ` i ) e. CC -> ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
4 |
1 3
|
syl |
|- ( ( C e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
5 |
4
|
sumeq2dv |
|- ( C e. ( EE ` N ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) 0 ) |
6 |
|
fzfid |
|- ( C e. ( EE ` N ) -> ( 1 ... N ) e. Fin ) |
7 |
|
sumz |
|- ( ( ( 1 ... N ) C_ ( ZZ>= ` 1 ) \/ ( 1 ... N ) e. Fin ) -> sum_ i e. ( 1 ... N ) 0 = 0 ) |
8 |
7
|
olcs |
|- ( ( 1 ... N ) e. Fin -> sum_ i e. ( 1 ... N ) 0 = 0 ) |
9 |
6 8
|
syl |
|- ( C e. ( EE ` N ) -> sum_ i e. ( 1 ... N ) 0 = 0 ) |
10 |
5 9
|
eqtrd |
|- ( C e. ( EE ` N ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
11 |
10
|
3ad2ant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) = 0 ) |
12 |
11
|
eqeq2d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 ) ) |
13 |
|
fzfid |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( 1 ... N ) e. Fin ) |
14 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
15 |
14
|
adantlr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
16 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
17 |
16
|
adantll |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
18 |
15 17
|
resubcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
19 |
18
|
resqcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
20 |
18
|
sqge0d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> 0 <_ ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
21 |
13 19 20
|
fsum00 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 ) ) |
22 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
23 |
|
fveecn |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
24 |
|
subcl |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( A ` i ) - ( B ` i ) ) e. CC ) |
25 |
|
sqeq0 |
|- ( ( ( A ` i ) - ( B ` i ) ) e. CC -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( ( A ` i ) - ( B ` i ) ) = 0 ) ) |
26 |
24 25
|
syl |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( ( A ` i ) - ( B ` i ) ) = 0 ) ) |
27 |
|
subeq0 |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( A ` i ) - ( B ` i ) ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
28 |
26 27
|
bitrd |
|- ( ( ( A ` i ) e. CC /\ ( B ` i ) e. CC ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
29 |
22 23 28
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) /\ ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
30 |
29
|
anandirs |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
31 |
30
|
ralbidva |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A. i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
32 |
21 31
|
bitrd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
33 |
32
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
34 |
12 33
|
bitrd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
35 |
|
simp1 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> A e. ( EE ` N ) ) |
36 |
|
simp2 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> B e. ( EE ` N ) ) |
37 |
|
simp3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |
38 |
|
brcgr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ ( C e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , C >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) ) ) |
39 |
35 36 37 37 38
|
syl22anc |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. C , C >. <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = sum_ i e. ( 1 ... N ) ( ( ( C ` i ) - ( C ` i ) ) ^ 2 ) ) ) |
40 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
41 |
40
|
3adant3 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
42 |
34 39 41
|
3bitr4d |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. C , C >. <-> A = B ) ) |
43 |
42
|
biimpd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( <. A , B >. Cgr <. C , C >. -> A = B ) ) |
44 |
43
|
adantl |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( <. A , B >. Cgr <. C , C >. -> A = B ) ) |