Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | eqeefv | |- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleei | |- ( A e. ( EE ` N ) -> A : ( 1 ... N ) --> RR ) |
|
2 | 1 | ffnd | |- ( A e. ( EE ` N ) -> A Fn ( 1 ... N ) ) |
3 | eleei | |- ( B e. ( EE ` N ) -> B : ( 1 ... N ) --> RR ) |
|
4 | 3 | ffnd | |- ( B e. ( EE ` N ) -> B Fn ( 1 ... N ) ) |
5 | eqfnfv | |- ( ( A Fn ( 1 ... N ) /\ B Fn ( 1 ... N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
|
6 | 2 4 5 | syl2an | |- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |