Metamath Proof Explorer


Theorem eqeefv

Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013)

Ref Expression
Assertion eqeefv
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) )

Proof

Step Hyp Ref Expression
1 eleei
 |-  ( A e. ( EE ` N ) -> A : ( 1 ... N ) --> RR )
2 1 ffnd
 |-  ( A e. ( EE ` N ) -> A Fn ( 1 ... N ) )
3 eleei
 |-  ( B e. ( EE ` N ) -> B : ( 1 ... N ) --> RR )
4 3 ffnd
 |-  ( B e. ( EE ` N ) -> B Fn ( 1 ... N ) )
5 eqfnfv
 |-  ( ( A Fn ( 1 ... N ) /\ B Fn ( 1 ... N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) )
6 2 4 5 syl2an
 |-  ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) )