Metamath Proof Explorer


Theorem eqeefv

Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013)

Ref Expression
Assertion eqeefv ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴𝑖 ) = ( 𝐵𝑖 ) ) )

Proof

Step Hyp Ref Expression
1 eleei ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐴 : ( 1 ... 𝑁 ) ⟶ ℝ )
2 1 ffnd ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐴 Fn ( 1 ... 𝑁 ) )
3 eleei ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐵 : ( 1 ... 𝑁 ) ⟶ ℝ )
4 3 ffnd ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) → 𝐵 Fn ( 1 ... 𝑁 ) )
5 eqfnfv ( ( 𝐴 Fn ( 1 ... 𝑁 ) ∧ 𝐵 Fn ( 1 ... 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴𝑖 ) = ( 𝐵𝑖 ) ) )
6 2 4 5 syl2an ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ( 𝐴𝑖 ) = ( 𝐵𝑖 ) ) )