Metamath Proof Explorer


Theorem eqeefv

Description: Two points are equal iff they agree in all dimensions. (Contributed by Scott Fenton, 10-Jun-2013)

Ref Expression
Assertion eqeefv A𝔼NB𝔼NA=Bi1NAi=Bi

Proof

Step Hyp Ref Expression
1 eleei A𝔼NA:1N
2 1 ffnd A𝔼NAFn1N
3 eleei B𝔼NB:1N
4 3 ffnd B𝔼NBFn1N
5 eqfnfv AFn1NBFn1NA=Bi1NAi=Bi
6 2 4 5 syl2an A𝔼NB𝔼NA=Bi1NAi=Bi