Metamath Proof Explorer


Theorem eqeelen

Description: Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013) (Revised by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion eqeelen A 𝔼 N B 𝔼 N A = B i = 1 N A i B i 2 = 0

Proof

Step Hyp Ref Expression
1 fveere A 𝔼 N i 1 N A i
2 1 adantlr A 𝔼 N B 𝔼 N i 1 N A i
3 fveere B 𝔼 N i 1 N B i
4 3 adantll A 𝔼 N B 𝔼 N i 1 N B i
5 2 4 resubcld A 𝔼 N B 𝔼 N i 1 N A i B i
6 5 recnd A 𝔼 N B 𝔼 N i 1 N A i B i
7 sqeq0 A i B i A i B i 2 = 0 A i B i = 0
8 6 7 syl A 𝔼 N B 𝔼 N i 1 N A i B i 2 = 0 A i B i = 0
9 2 recnd A 𝔼 N B 𝔼 N i 1 N A i
10 4 recnd A 𝔼 N B 𝔼 N i 1 N B i
11 9 10 subeq0ad A 𝔼 N B 𝔼 N i 1 N A i B i = 0 A i = B i
12 8 11 bitrd A 𝔼 N B 𝔼 N i 1 N A i B i 2 = 0 A i = B i
13 12 ralbidva A 𝔼 N B 𝔼 N i 1 N A i B i 2 = 0 i 1 N A i = B i
14 fzfid A 𝔼 N B 𝔼 N 1 N Fin
15 5 resqcld A 𝔼 N B 𝔼 N i 1 N A i B i 2
16 5 sqge0d A 𝔼 N B 𝔼 N i 1 N 0 A i B i 2
17 14 15 16 fsum00 A 𝔼 N B 𝔼 N i = 1 N A i B i 2 = 0 i 1 N A i B i 2 = 0
18 eqeefv A 𝔼 N B 𝔼 N A = B i 1 N A i = B i
19 13 17 18 3bitr4rd A 𝔼 N B 𝔼 N A = B i = 1 N A i B i 2 = 0