Metamath Proof Explorer


Theorem eqeelen

Description: Two points are equal iff the square of the distance between them is zero. (Contributed by Scott Fenton, 10-Jun-2013) (Revised by Mario Carneiro, 22-May-2014)

Ref Expression
Assertion eqeelen A𝔼NB𝔼NA=Bi=1NAiBi2=0

Proof

Step Hyp Ref Expression
1 fveere A𝔼Ni1NAi
2 1 adantlr A𝔼NB𝔼Ni1NAi
3 fveere B𝔼Ni1NBi
4 3 adantll A𝔼NB𝔼Ni1NBi
5 2 4 resubcld A𝔼NB𝔼Ni1NAiBi
6 5 recnd A𝔼NB𝔼Ni1NAiBi
7 sqeq0 AiBiAiBi2=0AiBi=0
8 6 7 syl A𝔼NB𝔼Ni1NAiBi2=0AiBi=0
9 2 recnd A𝔼NB𝔼Ni1NAi
10 4 recnd A𝔼NB𝔼Ni1NBi
11 9 10 subeq0ad A𝔼NB𝔼Ni1NAiBi=0Ai=Bi
12 8 11 bitrd A𝔼NB𝔼Ni1NAiBi2=0Ai=Bi
13 12 ralbidva A𝔼NB𝔼Ni1NAiBi2=0i1NAi=Bi
14 fzfid A𝔼NB𝔼N1NFin
15 5 resqcld A𝔼NB𝔼Ni1NAiBi2
16 5 sqge0d A𝔼NB𝔼Ni1N0AiBi2
17 14 15 16 fsum00 A𝔼NB𝔼Ni=1NAiBi2=0i1NAiBi2=0
18 eqeefv A𝔼NB𝔼NA=Bi1NAi=Bi
19 13 17 18 3bitr4rd A𝔼NB𝔼NA=Bi=1NAiBi2=0