Metamath Proof Explorer


Theorem brbtwn2

Description: Alternate characterization of betweenness, with no existential quantifiers. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion brbtwn2 A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i

Proof

Step Hyp Ref Expression
1 brbtwn A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C t 0 1 k 1 N A k = 1 t B k + t C k
2 fveere B 𝔼 N i 1 N B i
3 2 3ad2antl2 A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i
4 fveere C 𝔼 N i 1 N C i
5 4 3ad2antl3 A 𝔼 N B 𝔼 N C 𝔼 N i 1 N C i
6 3 5 jca A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i C i
7 resubcl B i C i B i C i
8 7 3adant3 B i C i t 0 1 B i C i
9 8 recnd B i C i t 0 1 B i C i
10 9 sqvald B i C i t 0 1 B i C i 2 = B i C i B i C i
11 10 oveq2d B i C i t 0 1 t 1 t B i C i 2 = t 1 t B i C i B i C i
12 elicc01 t 0 1 t 0 t t 1
13 12 simp1bi t 0 1 t
14 13 recnd t 0 1 t
15 14 3ad2ant3 B i C i t 0 1 t
16 1re 1
17 resubcl 1 t 1 t
18 16 13 17 sylancr t 0 1 1 t
19 18 3ad2ant3 B i C i t 0 1 1 t
20 19 recnd B i C i t 0 1 1 t
21 20 negcld B i C i t 0 1 1 t
22 15 9 21 9 mul4d B i C i t 0 1 t B i C i 1 t B i C i = t 1 t B i C i B i C i
23 recn B i B i
24 23 3ad2ant1 B i C i t 0 1 B i
25 recn C i C i
26 25 3ad2ant2 B i C i t 0 1 C i
27 15 24 26 subdid B i C i t 0 1 t B i C i = t B i t C i
28 ax-1cn 1
29 subdir 1 1 t B i 1 1 t B i = 1 B i 1 t B i
30 28 20 24 29 mp3an2i B i C i t 0 1 1 1 t B i = 1 B i 1 t B i
31 nncan 1 t 1 1 t = t
32 28 15 31 sylancr B i C i t 0 1 1 1 t = t
33 32 oveq1d B i C i t 0 1 1 1 t B i = t B i
34 24 mulid2d B i C i t 0 1 1 B i = B i
35 34 oveq1d B i C i t 0 1 1 B i 1 t B i = B i 1 t B i
36 30 33 35 3eqtr3d B i C i t 0 1 t B i = B i 1 t B i
37 36 oveq1d B i C i t 0 1 t B i t C i = B i - 1 t B i - t C i
38 simp1 B i C i t 0 1 B i
39 19 38 remulcld B i C i t 0 1 1 t B i
40 39 recnd B i C i t 0 1 1 t B i
41 13 3ad2ant3 B i C i t 0 1 t
42 simp2 B i C i t 0 1 C i
43 41 42 remulcld B i C i t 0 1 t C i
44 43 recnd B i C i t 0 1 t C i
45 24 40 44 subsub4d B i C i t 0 1 B i - 1 t B i - t C i = B i 1 t B i + t C i
46 27 37 45 3eqtrd B i C i t 0 1 t B i C i = B i 1 t B i + t C i
47 20 9 mulneg1d B i C i t 0 1 1 t B i C i = 1 t B i C i
48 20 24 26 subdid B i C i t 0 1 1 t B i C i = 1 t B i 1 t C i
49 subdir 1 t C i 1 t C i = 1 C i t C i
50 28 15 26 49 mp3an2i B i C i t 0 1 1 t C i = 1 C i t C i
51 26 mulid2d B i C i t 0 1 1 C i = C i
52 51 oveq1d B i C i t 0 1 1 C i t C i = C i t C i
53 50 52 eqtrd B i C i t 0 1 1 t C i = C i t C i
54 53 oveq2d B i C i t 0 1 1 t B i 1 t C i = 1 t B i C i t C i
55 40 26 44 subsub3d B i C i t 0 1 1 t B i C i t C i = 1 t B i + t C i - C i
56 48 54 55 3eqtrd B i C i t 0 1 1 t B i C i = 1 t B i + t C i - C i
57 56 negeqd B i C i t 0 1 1 t B i C i = 1 t B i + t C i - C i
58 39 43 readdcld B i C i t 0 1 1 t B i + t C i
59 58 recnd B i C i t 0 1 1 t B i + t C i
60 59 26 negsubdi2d B i C i t 0 1 1 t B i + t C i - C i = C i 1 t B i + t C i
61 47 57 60 3eqtrd B i C i t 0 1 1 t B i C i = C i 1 t B i + t C i
62 46 61 oveq12d B i C i t 0 1 t B i C i 1 t B i C i = B i 1 t B i + t C i C i 1 t B i + t C i
63 11 22 62 3eqtr2rd B i C i t 0 1 B i 1 t B i + t C i C i 1 t B i + t C i = t 1 t B i C i 2
64 15 20 mulneg2d B i C i t 0 1 t 1 t = t 1 t
65 64 oveq1d B i C i t 0 1 t 1 t B i C i 2 = t 1 t B i C i 2
66 41 19 remulcld B i C i t 0 1 t 1 t
67 66 recnd B i C i t 0 1 t 1 t
68 8 resqcld B i C i t 0 1 B i C i 2
69 68 recnd B i C i t 0 1 B i C i 2
70 67 69 mulneg1d B i C i t 0 1 t 1 t B i C i 2 = t 1 t B i C i 2
71 65 70 eqtrd B i C i t 0 1 t 1 t B i C i 2 = t 1 t B i C i 2
72 12 simp2bi t 0 1 0 t
73 12 simp3bi t 0 1 t 1
74 subge0 1 t 0 1 t t 1
75 16 13 74 sylancr t 0 1 0 1 t t 1
76 73 75 mpbird t 0 1 0 1 t
77 13 18 72 76 mulge0d t 0 1 0 t 1 t
78 77 3ad2ant3 B i C i t 0 1 0 t 1 t
79 8 sqge0d B i C i t 0 1 0 B i C i 2
80 66 68 78 79 mulge0d B i C i t 0 1 0 t 1 t B i C i 2
81 66 68 remulcld B i C i t 0 1 t 1 t B i C i 2
82 81 le0neg2d B i C i t 0 1 0 t 1 t B i C i 2 t 1 t B i C i 2 0
83 80 82 mpbid B i C i t 0 1 t 1 t B i C i 2 0
84 71 83 eqbrtrd B i C i t 0 1 t 1 t B i C i 2 0
85 63 84 eqbrtrd B i C i t 0 1 B i 1 t B i + t C i C i 1 t B i + t C i 0
86 85 3expa B i C i t 0 1 B i 1 t B i + t C i C i 1 t B i + t C i 0
87 6 86 sylan A 𝔼 N B 𝔼 N C 𝔼 N i 1 N t 0 1 B i 1 t B i + t C i C i 1 t B i + t C i 0
88 87 an32s A 𝔼 N B 𝔼 N C 𝔼 N t 0 1 i 1 N B i 1 t B i + t C i C i 1 t B i + t C i 0
89 88 ralrimiva A 𝔼 N B 𝔼 N C 𝔼 N t 0 1 i 1 N B i 1 t B i + t C i C i 1 t B i + t C i 0
90 fveecn B 𝔼 N i 1 N B i
91 fveecn C 𝔼 N i 1 N C i
92 90 91 anim12i B 𝔼 N i 1 N C 𝔼 N i 1 N B i C i
93 92 anandirs B 𝔼 N C 𝔼 N i 1 N B i C i
94 fveecn B 𝔼 N j 1 N B j
95 fveecn C 𝔼 N j 1 N C j
96 94 95 anim12i B 𝔼 N j 1 N C 𝔼 N j 1 N B j C j
97 96 anandirs B 𝔼 N C 𝔼 N j 1 N B j C j
98 93 97 anim12dan B 𝔼 N C 𝔼 N i 1 N j 1 N B i C i B j C j
99 98 3adantl1 A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i C i B j C j
100 subcl B i C i B i C i
101 100 3ad2ant1 B i C i B j C j t B i C i
102 subcl C j B j C j B j
103 102 ancoms B j C j C j B j
104 103 3ad2ant2 B i C i B j C j t C j B j
105 101 104 mulcomd B i C i B j C j t B i C i C j B j = C j B j B i C i
106 simp2r B i C i B j C j t C j
107 simp2l B i C i B j C j t B j
108 simp1l B i C i B j C j t B i
109 simp1r B i C i B j C j t C i
110 mulsub2 C j B j B i C i C j B j B i C i = B j C j C i B i
111 106 107 108 109 110 syl22anc B i C i B j C j t C j B j B i C i = B j C j C i B i
112 105 111 eqtrd B i C i B j C j t B i C i C j B j = B j C j C i B i
113 112 oveq2d B i C i B j C j t t 1 t B i C i C j B j = t 1 t B j C j C i B i
114 simp3 B i C i B j C j t t
115 subcl 1 t 1 t
116 28 115 mpan t 1 t
117 116 3ad2ant3 B i C i B j C j t 1 t
118 114 117 101 104 mul4d B i C i B j C j t t 1 t B i C i C j B j = t B i C i 1 t C j B j
119 114 108 109 subdid B i C i B j C j t t B i C i = t B i t C i
120 28 117 108 29 mp3an2i B i C i B j C j t 1 1 t B i = 1 B i 1 t B i
121 28 31 mpan t 1 1 t = t
122 121 3ad2ant3 B i C i B j C j t 1 1 t = t
123 122 oveq1d B i C i B j C j t 1 1 t B i = t B i
124 108 mulid2d B i C i B j C j t 1 B i = B i
125 124 oveq1d B i C i B j C j t 1 B i 1 t B i = B i 1 t B i
126 120 123 125 3eqtr3d B i C i B j C j t t B i = B i 1 t B i
127 126 oveq1d B i C i B j C j t t B i t C i = B i - 1 t B i - t C i
128 117 108 mulcld B i C i B j C j t 1 t B i
129 114 109 mulcld B i C i B j C j t t C i
130 108 128 129 subsub4d B i C i B j C j t B i - 1 t B i - t C i = B i 1 t B i + t C i
131 119 127 130 3eqtrd B i C i B j C j t t B i C i = B i 1 t B i + t C i
132 117 106 107 subdid B i C i B j C j t 1 t C j B j = 1 t C j 1 t B j
133 subdir 1 t C j 1 t C j = 1 C j t C j
134 28 114 106 133 mp3an2i B i C i B j C j t 1 t C j = 1 C j t C j
135 106 mulid2d B i C i B j C j t 1 C j = C j
136 135 oveq1d B i C i B j C j t 1 C j t C j = C j t C j
137 134 136 eqtrd B i C i B j C j t 1 t C j = C j t C j
138 137 oveq1d B i C i B j C j t 1 t C j 1 t B j = C j - t C j - 1 t B j
139 132 138 eqtrd B i C i B j C j t 1 t C j B j = C j - t C j - 1 t B j
140 114 106 mulcld B i C i B j C j t t C j
141 117 107 mulcld B i C i B j C j t 1 t B j
142 106 140 141 sub32d B i C i B j C j t C j - t C j - 1 t B j = C j - 1 t B j - t C j
143 106 141 140 subsub4d B i C i B j C j t C j - 1 t B j - t C j = C j 1 t B j + t C j
144 139 142 143 3eqtrd B i C i B j C j t 1 t C j B j = C j 1 t B j + t C j
145 131 144 oveq12d B i C i B j C j t t B i C i 1 t C j B j = B i 1 t B i + t C i C j 1 t B j + t C j
146 118 145 eqtrd B i C i B j C j t t 1 t B i C i C j B j = B i 1 t B i + t C i C j 1 t B j + t C j
147 subcl B j C j B j C j
148 147 3ad2ant2 B i C i B j C j t B j C j
149 subcl C i B i C i B i
150 149 ancoms B i C i C i B i
151 150 3ad2ant1 B i C i B j C j t C i B i
152 114 117 148 151 mul4d B i C i B j C j t t 1 t B j C j C i B i = t B j C j 1 t C i B i
153 114 107 106 subdid B i C i B j C j t t B j C j = t B j t C j
154 subdir 1 1 t B j 1 1 t B j = 1 B j 1 t B j
155 28 117 107 154 mp3an2i B i C i B j C j t 1 1 t B j = 1 B j 1 t B j
156 122 oveq1d B i C i B j C j t 1 1 t B j = t B j
157 107 mulid2d B i C i B j C j t 1 B j = B j
158 157 oveq1d B i C i B j C j t 1 B j 1 t B j = B j 1 t B j
159 155 156 158 3eqtr3rd B i C i B j C j t B j 1 t B j = t B j
160 159 oveq1d B i C i B j C j t B j - 1 t B j - t C j = t B j t C j
161 107 141 140 subsub4d B i C i B j C j t B j - 1 t B j - t C j = B j 1 t B j + t C j
162 153 160 161 3eqtr2d B i C i B j C j t t B j C j = B j 1 t B j + t C j
163 117 109 108 subdid B i C i B j C j t 1 t C i B i = 1 t C i 1 t B i
164 28 114 109 49 mp3an2i B i C i B j C j t 1 t C i = 1 C i t C i
165 109 mulid2d B i C i B j C j t 1 C i = C i
166 165 oveq1d B i C i B j C j t 1 C i t C i = C i t C i
167 164 166 eqtrd B i C i B j C j t 1 t C i = C i t C i
168 167 oveq1d B i C i B j C j t 1 t C i 1 t B i = C i - t C i - 1 t B i
169 109 129 128 sub32d B i C i B j C j t C i - t C i - 1 t B i = C i - 1 t B i - t C i
170 109 128 129 subsub4d B i C i B j C j t C i - 1 t B i - t C i = C i 1 t B i + t C i
171 169 170 eqtrd B i C i B j C j t C i - t C i - 1 t B i = C i 1 t B i + t C i
172 163 168 171 3eqtrd B i C i B j C j t 1 t C i B i = C i 1 t B i + t C i
173 162 172 oveq12d B i C i B j C j t t B j C j 1 t C i B i = B j 1 t B j + t C j C i 1 t B i + t C i
174 152 173 eqtrd B i C i B j C j t t 1 t B j C j C i B i = B j 1 t B j + t C j C i 1 t B i + t C i
175 113 146 174 3eqtr3d B i C i B j C j t B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
176 175 3expa B i C i B j C j t B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
177 99 14 176 syl2an A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N t 0 1 B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
178 177 an32s A 𝔼 N B 𝔼 N C 𝔼 N t 0 1 i 1 N j 1 N B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
179 178 ralrimivva A 𝔼 N B 𝔼 N C 𝔼 N t 0 1 i 1 N j 1 N B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
180 fveq2 k = i A k = A i
181 fveq2 k = i B k = B i
182 181 oveq2d k = i 1 t B k = 1 t B i
183 fveq2 k = i C k = C i
184 183 oveq2d k = i t C k = t C i
185 182 184 oveq12d k = i 1 t B k + t C k = 1 t B i + t C i
186 180 185 eqeq12d k = i A k = 1 t B k + t C k A i = 1 t B i + t C i
187 186 rspccva k 1 N A k = 1 t B k + t C k i 1 N A i = 1 t B i + t C i
188 oveq2 A i = 1 t B i + t C i B i A i = B i 1 t B i + t C i
189 oveq2 A i = 1 t B i + t C i C i A i = C i 1 t B i + t C i
190 188 189 oveq12d A i = 1 t B i + t C i B i A i C i A i = B i 1 t B i + t C i C i 1 t B i + t C i
191 190 breq1d A i = 1 t B i + t C i B i A i C i A i 0 B i 1 t B i + t C i C i 1 t B i + t C i 0
192 187 191 syl k 1 N A k = 1 t B k + t C k i 1 N B i A i C i A i 0 B i 1 t B i + t C i C i 1 t B i + t C i 0
193 192 ralbidva k 1 N A k = 1 t B k + t C k i 1 N B i A i C i A i 0 i 1 N B i 1 t B i + t C i C i 1 t B i + t C i 0
194 fveq2 k = j A k = A j
195 fveq2 k = j B k = B j
196 195 oveq2d k = j 1 t B k = 1 t B j
197 fveq2 k = j C k = C j
198 197 oveq2d k = j t C k = t C j
199 196 198 oveq12d k = j 1 t B k + t C k = 1 t B j + t C j
200 194 199 eqeq12d k = j A k = 1 t B k + t C k A j = 1 t B j + t C j
201 200 rspccva k 1 N A k = 1 t B k + t C k j 1 N A j = 1 t B j + t C j
202 oveq2 A j = 1 t B j + t C j C j A j = C j 1 t B j + t C j
203 188 202 oveqan12d A i = 1 t B i + t C i A j = 1 t B j + t C j B i A i C j A j = B i 1 t B i + t C i C j 1 t B j + t C j
204 oveq2 A j = 1 t B j + t C j B j A j = B j 1 t B j + t C j
205 204 189 oveqan12rd A i = 1 t B i + t C i A j = 1 t B j + t C j B j A j C i A i = B j 1 t B j + t C j C i 1 t B i + t C i
206 203 205 eqeq12d A i = 1 t B i + t C i A j = 1 t B j + t C j B i A i C j A j = B j A j C i A i B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
207 187 201 206 syl2an k 1 N A k = 1 t B k + t C k i 1 N k 1 N A k = 1 t B k + t C k j 1 N B i A i C j A j = B j A j C i A i B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
208 207 anandis k 1 N A k = 1 t B k + t C k i 1 N j 1 N B i A i C j A j = B j A j C i A i B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
209 208 2ralbidva k 1 N A k = 1 t B k + t C k i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N j 1 N B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
210 193 209 anbi12d k 1 N A k = 1 t B k + t C k i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N B i 1 t B i + t C i C i 1 t B i + t C i 0 i 1 N j 1 N B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i
211 210 biimprcd i 1 N B i 1 t B i + t C i C i 1 t B i + t C i 0 i 1 N j 1 N B i 1 t B i + t C i C j 1 t B j + t C j = B j 1 t B j + t C j C i 1 t B i + t C i k 1 N A k = 1 t B k + t C k i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i
212 89 179 211 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N t 0 1 k 1 N A k = 1 t B k + t C k i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i
213 212 rexlimdva A 𝔼 N B 𝔼 N C 𝔼 N t 0 1 k 1 N A k = 1 t B k + t C k i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i
214 fveere A 𝔼 N i 1 N A i
215 214 3ad2antl1 A 𝔼 N B 𝔼 N C 𝔼 N i 1 N A i
216 mulsuble0b B i A i C i B i A i C i A i 0 B i A i A i C i C i A i A i B i
217 3 215 5 216 syl3anc A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i A i C i A i 0 B i A i A i C i C i A i A i B i
218 217 ralbidva A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i A i C i A i 0 i 1 N B i A i A i C i C i A i A i B i
219 218 anbi1d A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i
220 simpl2 A 𝔼 N B 𝔼 N C 𝔼 N B = C B 𝔼 N
221 simpl1 A 𝔼 N B 𝔼 N C 𝔼 N B = C A 𝔼 N
222 eqeefv B 𝔼 N A 𝔼 N B = A i 1 N B i = A i
223 220 221 222 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N B = C B = A i 1 N B i = A i
224 3 adantlr A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i
225 215 adantlr A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N A i
226 224 225 letri3d A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i = A i B i A i A i B i
227 pm4.25 B i A i A i B i B i A i A i B i B i A i A i B i
228 fveq1 B = C B i = C i
229 228 breq2d B = C A i B i A i C i
230 229 anbi2d B = C B i A i A i B i B i A i A i C i
231 228 breq1d B = C B i A i C i A i
232 231 anbi1d B = C B i A i A i B i C i A i A i B i
233 230 232 orbi12d B = C B i A i A i B i B i A i A i B i B i A i A i C i C i A i A i B i
234 233 ad2antlr A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i A i A i B i B i A i A i B i B i A i A i C i C i A i A i B i
235 227 234 syl5bb A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i A i A i B i B i A i A i C i C i A i A i B i
236 226 235 bitrd A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i = A i B i A i A i C i C i A i A i B i
237 236 ralbidva A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i = A i i 1 N B i A i A i C i C i A i A i B i
238 223 237 bitrd A 𝔼 N B 𝔼 N C 𝔼 N B = C B = A i 1 N B i A i A i C i C i A i A i B i
239 238 biimprd A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i A i A i C i C i A i A i B i B = A
240 239 adantrd A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i B = A
241 240 ex A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i B = A
242 0elunit 0 0 1
243 fveecn A 𝔼 N k 1 N A k
244 243 3ad2antl1 A 𝔼 N B 𝔼 N C 𝔼 N k 1 N A k
245 fveecn B 𝔼 N k 1 N B k
246 245 3ad2antl2 A 𝔼 N B 𝔼 N C 𝔼 N k 1 N B k
247 fveecn C 𝔼 N k 1 N C k
248 247 3ad2antl3 A 𝔼 N B 𝔼 N C 𝔼 N k 1 N C k
249 244 246 248 3jca A 𝔼 N B 𝔼 N C 𝔼 N k 1 N A k B k C k
250 mulid2 B k 1 B k = B k
251 mul02 C k 0 C k = 0
252 250 251 oveqan12d B k C k 1 B k + 0 C k = B k + 0
253 addid1 B k B k + 0 = B k
254 253 adantr B k C k B k + 0 = B k
255 252 254 eqtrd B k C k 1 B k + 0 C k = B k
256 255 3adant1 A k B k C k 1 B k + 0 C k = B k
257 256 adantr A k B k C k B = C B = A 1 B k + 0 C k = B k
258 fveq1 B = A B k = A k
259 258 ad2antll A k B k C k B = C B = A B k = A k
260 257 259 eqtr2d A k B k C k B = C B = A A k = 1 B k + 0 C k
261 249 260 sylan A 𝔼 N B 𝔼 N C 𝔼 N k 1 N B = C B = A A k = 1 B k + 0 C k
262 261 an32s A 𝔼 N B 𝔼 N C 𝔼 N B = C B = A k 1 N A k = 1 B k + 0 C k
263 262 ralrimiva A 𝔼 N B 𝔼 N C 𝔼 N B = C B = A k 1 N A k = 1 B k + 0 C k
264 oveq2 t = 0 1 t = 1 0
265 1m0e1 1 0 = 1
266 264 265 eqtrdi t = 0 1 t = 1
267 266 oveq1d t = 0 1 t B k = 1 B k
268 oveq1 t = 0 t C k = 0 C k
269 267 268 oveq12d t = 0 1 t B k + t C k = 1 B k + 0 C k
270 269 eqeq2d t = 0 A k = 1 t B k + t C k A k = 1 B k + 0 C k
271 270 ralbidv t = 0 k 1 N A k = 1 t B k + t C k k 1 N A k = 1 B k + 0 C k
272 271 rspcev 0 0 1 k 1 N A k = 1 B k + 0 C k t 0 1 k 1 N A k = 1 t B k + t C k
273 242 263 272 sylancr A 𝔼 N B 𝔼 N C 𝔼 N B = C B = A t 0 1 k 1 N A k = 1 t B k + t C k
274 273 exp32 A 𝔼 N B 𝔼 N C 𝔼 N B = C B = A t 0 1 k 1 N A k = 1 t B k + t C k
275 241 274 syldd A 𝔼 N B 𝔼 N C 𝔼 N B = C i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i t 0 1 k 1 N A k = 1 t B k + t C k
276 eqeefv B 𝔼 N C 𝔼 N B = C p 1 N B p = C p
277 276 3adant1 A 𝔼 N B 𝔼 N C 𝔼 N B = C p 1 N B p = C p
278 277 necon3abid A 𝔼 N B 𝔼 N C 𝔼 N B C ¬ p 1 N B p = C p
279 df-ne B p C p ¬ B p = C p
280 279 rexbii p 1 N B p C p p 1 N ¬ B p = C p
281 rexnal p 1 N ¬ B p = C p ¬ p 1 N B p = C p
282 280 281 bitri p 1 N B p C p ¬ p 1 N B p = C p
283 278 282 bitr4di A 𝔼 N B 𝔼 N C 𝔼 N B C p 1 N B p C p
284 fveq2 i = p B i = B p
285 fveq2 i = p A i = A p
286 284 285 breq12d i = p B i A i B p A p
287 fveq2 i = p C i = C p
288 285 287 breq12d i = p A i C i A p C p
289 286 288 anbi12d i = p B i A i A i C i B p A p A p C p
290 287 285 breq12d i = p C i A i C p A p
291 285 284 breq12d i = p A i B i A p B p
292 290 291 anbi12d i = p C i A i A i B i C p A p A p B p
293 289 292 orbi12d i = p B i A i A i C i C i A i A i B i B p A p A p C p C p A p A p B p
294 293 rspcv p 1 N i 1 N B i A i A i C i C i A i A i B i B p A p A p C p C p A p A p B p
295 294 ad2antrl A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p i 1 N B i A i A i C i C i A i A i B i B p A p A p C p C p A p A p B p
296 simprr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p A p C p
297 simp1 A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
298 simpl p 1 N B p C p p 1 N
299 fveere A 𝔼 N p 1 N A p
300 297 298 299 syl2an A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p A p
301 simp3 A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N
302 fveere C 𝔼 N p 1 N C p
303 301 298 302 syl2an A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p
304 simpl2 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B 𝔼 N
305 simprl A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p p 1 N
306 fveere B 𝔼 N p 1 N B p
307 304 305 306 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p
308 300 303 307 lesub1d A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p A p C p A p B p C p B p
309 308 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p A p C p A p B p C p B p
310 296 309 mpbid A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p A p B p C p B p
311 300 307 resubcld A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p A p B p
312 311 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p A p B p
313 simprl A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p B p A p
314 300 307 subge0d A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p 0 A p B p B p A p
315 314 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p 0 A p B p B p A p
316 313 315 mpbird A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p 0 A p B p
317 303 307 resubcld A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p B p
318 317 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p C p B p
319 letr B p A p C p B p A p A p C p B p C p
320 307 300 303 319 syl3anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p B p C p
321 320 imp A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p B p C p
322 simplrr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p B p C p
323 322 necomd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p C p B p
324 307 303 ltlend A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p < C p B p C p C p B p
325 324 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p B p < C p B p C p C p B p
326 321 323 325 mpbir2and A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p B p < C p
327 307 303 posdifd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p < C p 0 < C p B p
328 327 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p B p < C p 0 < C p B p
329 326 328 mpbid A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p 0 < C p B p
330 divelunit A p B p 0 A p B p C p B p 0 < C p B p A p B p C p B p 0 1 A p B p C p B p
331 312 316 318 329 330 syl22anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p A p B p C p B p 0 1 A p B p C p B p
332 310 331 mpbird A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p A p B p C p B p 0 1
333 300 recnd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p A p
334 307 recnd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p
335 303 recnd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p
336 simprr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p C p
337 336 necomd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p B p
338 333 334 335 334 337 div2subd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p A p B p C p B p = B p A p B p C p
339 338 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p A p B p C p B p = B p A p B p C p
340 simprl A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p C p A p
341 303 300 307 lesub2d A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p B p A p B p C p
342 341 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p C p A p B p A p B p C p
343 340 342 mpbid A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p B p A p B p C p
344 307 300 resubcld A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p
345 344 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p B p A p
346 simprr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p A p B p
347 307 300 subge0d A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p 0 B p A p A p B p
348 347 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p 0 B p A p A p B p
349 346 348 mpbird A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p 0 B p A p
350 307 303 resubcld A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p C p
351 350 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p B p C p
352 letr C p A p B p C p A p A p B p C p B p
353 303 300 307 352 syl3anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p C p B p
354 353 imp A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p C p B p
355 simplrr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p B p C p
356 303 307 ltlend A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p < B p C p B p B p C p
357 356 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p C p < B p C p B p B p C p
358 354 355 357 mpbir2and A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p C p < B p
359 303 307 posdifd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p < B p 0 < B p C p
360 359 adantr A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p C p < B p 0 < B p C p
361 358 360 mpbid A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p 0 < B p C p
362 divelunit B p A p 0 B p A p B p C p 0 < B p C p B p A p B p C p 0 1 B p A p B p C p
363 345 349 351 361 362 syl22anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p B p A p B p C p 0 1 B p A p B p C p
364 343 363 mpbird A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p B p A p B p C p 0 1
365 339 364 eqeltrd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p C p A p A p B p A p B p C p B p 0 1
366 332 365 jaodan A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p C p A p A p B p A p B p C p B p 0 1
367 366 ex A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p B p A p A p C p C p A p A p B p A p B p C p B p 0 1
368 295 367 syld A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p i 1 N B i A i A i C i C i A i A i B i A p B p C p B p 0 1
369 simp2l A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N p 1 N
370 simp3 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N k 1 N
371 284 285 oveq12d i = p B i A i = B p A p
372 371 oveq1d i = p B i A i C j A j = B p A p C j A j
373 287 285 oveq12d i = p C i A i = C p A p
374 373 oveq2d i = p B j A j C i A i = B j A j C p A p
375 372 374 eqeq12d i = p B i A i C j A j = B j A j C i A i B p A p C j A j = B j A j C p A p
376 fveq2 j = k C j = C k
377 fveq2 j = k A j = A k
378 376 377 oveq12d j = k C j A j = C k A k
379 378 oveq2d j = k B p A p C j A j = B p A p C k A k
380 fveq2 j = k B j = B k
381 380 377 oveq12d j = k B j A j = B k A k
382 381 oveq1d j = k B j A j C p A p = B k A k C p A p
383 379 382 eqeq12d j = k B p A p C j A j = B j A j C p A p B p A p C k A k = B k A k C p A p
384 375 383 rspc2v p 1 N k 1 N i 1 N j 1 N B i A i C j A j = B j A j C i A i B p A p C k A k = B k A k C p A p
385 369 370 384 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N i 1 N j 1 N B i A i C j A j = B j A j C i A i B p A p C k A k = B k A k C p A p
386 simp11 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N A 𝔼 N
387 386 370 243 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N A k
388 simp12 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N B 𝔼 N
389 388 370 245 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N B k
390 simp13 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N C 𝔼 N
391 390 370 247 syl2anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N C k
392 333 3adant3 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N A p
393 334 3adant3 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N B p
394 335 3adant3 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N C p
395 simp2r A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N B p C p
396 395 necomd A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N C p B p
397 simpl23 A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p
398 simpl21 A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p A p
399 397 398 subcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p
400 simpl12 A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B k
401 399 400 mulcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k
402 simpl22 A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p
403 398 402 subcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p A p B p
404 simpl13 A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C k
405 403 404 mulcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p A p B p C k
406 397 402 subcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p
407 simpl3 A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p
408 397 402 407 subne0d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p 0
409 401 405 406 408 divdird A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k + A p B p C k C p B p = C p A p B k C p B p + A p B p C k C p B p
410 npncan2 B p A p B p A p + A p - B p = 0
411 402 398 410 syl2anc A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p + A p - B p = 0
412 411 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p + A p - B p C k = 0 C k
413 402 398 subcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p
414 413 403 404 adddird A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p + A p - B p C k = B p A p C k + A p B p C k
415 404 mul02d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p 0 C k = 0
416 412 414 415 3eqtr3d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + A p B p C k = 0
417 416 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + A p B p C k + C p B p A k = 0 + C p B p A k
418 413 404 mulcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k
419 simpl11 A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p A k
420 406 419 mulcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p A k
421 418 405 420 add32d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + A p B p C k + C p B p A k = B p A p C k + C p B p A k + A p B p C k
422 420 addid2d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p 0 + C p B p A k = C p B p A k
423 417 421 422 3eqtr3rd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p A k = B p A p C k + C p B p A k + A p B p C k
424 399 419 mulcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p A k
425 413 419 mulcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p A k
426 418 424 425 addsubd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + C p A p A k - B p A p A k = B p A p C k - B p A p A k + C p A p A k
427 397 402 398 nnncan2d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p - A p - B p A p = C p B p
428 427 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p - A p - B p A p A k = C p B p A k
429 399 413 419 subdird A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p - A p - B p A p A k = C p A p A k B p A p A k
430 428 429 eqtr3d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p A k = C p A p A k B p A p A k
431 430 oveq2d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + C p B p A k = B p A p C k + C p A p A k - B p A p A k
432 418 424 425 addsubassd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + C p A p A k - B p A p A k = B p A p C k + C p A p A k - B p A p A k
433 431 432 eqtr4d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + C p B p A k = B p A p C k + C p A p A k - B p A p A k
434 413 404 419 subdid A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k A k = B p A p C k B p A p A k
435 434 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k A k + C p A p A k = B p A p C k - B p A p A k + C p A p A k
436 426 433 435 3eqtr4d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + C p B p A k = B p A p C k A k + C p A p A k
437 436 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k + C p B p A k + A p B p C k = B p A p C k A k + C p A p A k + A p B p C k
438 423 437 eqtrd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p A k = B p A p C k A k + C p A p A k + A p B p C k
439 simpr A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k A k = B k A k C p A p
440 439 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k A k + C p A p A k = B k A k C p A p + C p A p A k
441 440 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B p A p C k A k + C p A p A k + A p B p C k = B k A k C p A p + C p A p A k + A p B p C k
442 400 419 subcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B k A k
443 442 399 mulcomd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B k A k C p A p = C p A p B k A k
444 443 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B k A k C p A p + C p A p A k = C p A p B k A k + C p A p A k
445 399 442 419 adddid A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k - A k + A k = C p A p B k A k + C p A p A k
446 400 419 npcand A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B k - A k + A k = B k
447 446 oveq2d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k - A k + A k = C p A p B k
448 444 445 447 3eqtr2d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B k A k C p A p + C p A p A k = C p A p B k
449 448 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p B k A k C p A p + C p A p A k + A p B p C k = C p A p B k + A p B p C k
450 438 441 449 3eqtrd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p A k = C p A p B k + A p B p C k
451 401 405 addcld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k + A p B p C k
452 451 406 419 408 divmuld A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k + A p B p C k C p B p = A k C p B p A k = C p A p B k + A p B p C k
453 450 452 mpbird A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k + A p B p C k C p B p = A k
454 399 400 406 408 div23d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k C p B p = C p A p C p B p B k
455 406 403 406 408 divsubdird A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p - B p - A p B p C p B p = C p B p C p B p A p B p C p B p
456 397 398 402 nnncan2d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p - B p - A p B p = C p A p
457 456 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p - B p - A p B p C p B p = C p A p C p B p
458 406 408 dividd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p C p B p = 1
459 458 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p B p C p B p A p B p C p B p = 1 A p B p C p B p
460 455 457 459 3eqtr3d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p C p B p = 1 A p B p C p B p
461 460 oveq1d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p C p B p B k = 1 A p B p C p B p B k
462 454 461 eqtrd A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k C p B p = 1 A p B p C p B p B k
463 403 404 406 408 div23d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p A p B p C k C p B p = A p B p C p B p C k
464 462 463 oveq12d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p C p A p B k C p B p + A p B p C k C p B p = 1 A p B p C p B p B k + A p B p C p B p C k
465 409 453 464 3eqtr3d A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p A k = 1 A p B p C p B p B k + A p B p C p B p C k
466 465 ex A k B k C k A p B p C p C p B p B p A p C k A k = B k A k C p A p A k = 1 A p B p C p B p B k + A p B p C p B p C k
467 387 389 391 392 393 394 396 466 syl331anc A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N B p A p C k A k = B k A k C p A p A k = 1 A p B p C p B p B k + A p B p C p B p C k
468 385 467 syld A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N i 1 N j 1 N B i A i C j A j = B j A j C i A i A k = 1 A p B p C p B p B k + A p B p C p B p C k
469 468 3expia A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p k 1 N i 1 N j 1 N B i A i C j A j = B j A j C i A i A k = 1 A p B p C p B p B k + A p B p C p B p C k
470 469 com23 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p i 1 N j 1 N B i A i C j A j = B j A j C i A i k 1 N A k = 1 A p B p C p B p B k + A p B p C p B p C k
471 470 ralrimdv A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p i 1 N j 1 N B i A i C j A j = B j A j C i A i k 1 N A k = 1 A p B p C p B p B k + A p B p C p B p C k
472 368 471 anim12d A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i A p B p C p B p 0 1 k 1 N A k = 1 A p B p C p B p B k + A p B p C p B p C k
473 oveq2 t = A p B p C p B p 1 t = 1 A p B p C p B p
474 473 oveq1d t = A p B p C p B p 1 t B k = 1 A p B p C p B p B k
475 oveq1 t = A p B p C p B p t C k = A p B p C p B p C k
476 474 475 oveq12d t = A p B p C p B p 1 t B k + t C k = 1 A p B p C p B p B k + A p B p C p B p C k
477 476 eqeq2d t = A p B p C p B p A k = 1 t B k + t C k A k = 1 A p B p C p B p B k + A p B p C p B p C k
478 477 ralbidv t = A p B p C p B p k 1 N A k = 1 t B k + t C k k 1 N A k = 1 A p B p C p B p B k + A p B p C p B p C k
479 478 rspcev A p B p C p B p 0 1 k 1 N A k = 1 A p B p C p B p B k + A p B p C p B p C k t 0 1 k 1 N A k = 1 t B k + t C k
480 472 479 syl6 A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i t 0 1 k 1 N A k = 1 t B k + t C k
481 480 rexlimdvaa A 𝔼 N B 𝔼 N C 𝔼 N p 1 N B p C p i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i t 0 1 k 1 N A k = 1 t B k + t C k
482 283 481 sylbid A 𝔼 N B 𝔼 N C 𝔼 N B C i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i t 0 1 k 1 N A k = 1 t B k + t C k
483 275 482 pm2.61dne A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i A i A i C i C i A i A i B i i 1 N j 1 N B i A i C j A j = B j A j C i A i t 0 1 k 1 N A k = 1 t B k + t C k
484 219 483 sylbid A 𝔼 N B 𝔼 N C 𝔼 N i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i t 0 1 k 1 N A k = 1 t B k + t C k
485 213 484 impbid A 𝔼 N B 𝔼 N C 𝔼 N t 0 1 k 1 N A k = 1 t B k + t C k i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i
486 1 485 bitrd A 𝔼 N B 𝔼 N C 𝔼 N A Btwn B C i 1 N B i A i C i A i 0 i 1 N j 1 N B i A i C j A j = B j A j C i A i