Metamath Proof Explorer
Description: Subtraction from both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 27-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
leidd.1 |
|
|
|
ltnegd.2 |
|
|
|
ltadd1d.3 |
|
|
Assertion |
lesub1d |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
leidd.1 |
|
2 |
|
ltnegd.2 |
|
3 |
|
ltadd1d.3 |
|
4 |
|
lesub1 |
|
5 |
1 2 3 4
|
syl3anc |
|