Metamath Proof Explorer


Theorem le0neg2d

Description: Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis leidd.1 φA
Assertion le0neg2d φ0AA0

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 le0neg2 A0AA0
3 1 2 syl φ0AA0