Metamath Proof Explorer


Theorem subge0

Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subge0 A B 0 A B B A

Proof

Step Hyp Ref Expression
1 0red A B 0
2 simpr A B B
3 simpl A B A
4 leaddsub 0 B A 0 + B A 0 A B
5 1 2 3 4 syl3anc A B 0 + B A 0 A B
6 2 recnd A B B
7 6 addid2d A B 0 + B = B
8 7 breq1d A B 0 + B A B A
9 5 8 bitr3d A B 0 A B B A