Metamath Proof Explorer


Theorem subge0

Description: Nonnegative subtraction. (Contributed by NM, 14-Mar-2005) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion subge0 ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴𝐵 ) ↔ 𝐵𝐴 ) )

Proof

Step Hyp Ref Expression
1 0red ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ )
2 simpr ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ )
3 simpl ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ )
4 leaddsub ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 + 𝐵 ) ≤ 𝐴 ↔ 0 ≤ ( 𝐴𝐵 ) ) )
5 1 2 3 4 syl3anc ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 + 𝐵 ) ≤ 𝐴 ↔ 0 ≤ ( 𝐴𝐵 ) ) )
6 2 recnd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ )
7 6 addid2d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 + 𝐵 ) = 𝐵 )
8 7 breq1d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 + 𝐵 ) ≤ 𝐴𝐵𝐴 ) )
9 5 8 bitr3d ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴𝐵 ) ↔ 𝐵𝐴 ) )