Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 0 ∈ ℝ ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
4 |
|
leaddsub |
⊢ ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 + 𝐵 ) ≤ 𝐴 ↔ 0 ≤ ( 𝐴 − 𝐵 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 + 𝐵 ) ≤ 𝐴 ↔ 0 ≤ ( 𝐴 − 𝐵 ) ) ) |
6 |
2
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
7 |
6
|
addid2d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 + 𝐵 ) = 𝐵 ) |
8 |
7
|
breq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 + 𝐵 ) ≤ 𝐴 ↔ 𝐵 ≤ 𝐴 ) ) |
9 |
5 8
|
bitr3d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 ≤ ( 𝐴 − 𝐵 ) ↔ 𝐵 ≤ 𝐴 ) ) |