| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							0red | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  0  ∈  ℝ )  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℝ )  | 
						
						
							| 3 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐴  ∈  ℝ )  | 
						
						
							| 4 | 
							
								
							 | 
							leaddsub | 
							⊢ ( ( 0  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐴  ∈  ℝ )  →  ( ( 0  +  𝐵 )  ≤  𝐴  ↔  0  ≤  ( 𝐴  −  𝐵 ) ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  +  𝐵 )  ≤  𝐴  ↔  0  ≤  ( 𝐴  −  𝐵 ) ) )  | 
						
						
							| 6 | 
							
								2
							 | 
							recnd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  𝐵  ∈  ℂ )  | 
						
						
							| 7 | 
							
								6
							 | 
							addlidd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  +  𝐵 )  =  𝐵 )  | 
						
						
							| 8 | 
							
								7
							 | 
							breq1d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ( 0  +  𝐵 )  ≤  𝐴  ↔  𝐵  ≤  𝐴 ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							bitr3d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 0  ≤  ( 𝐴  −  𝐵 )  ↔  𝐵  ≤  𝐴 ) )  |