Metamath Proof Explorer


Theorem colinearalglem1

Description: Lemma for colinearalg . Expand out a multiplication. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion colinearalglem1 A B C D E F B A F D = E D C A B F A F + B D = C E A E + C D

Proof

Step Hyp Ref Expression
1 simpl2 A B C D E F B
2 simpl1 A B C D E F A
3 1 2 subcld A B C D E F B A
4 simpr3 A B C D E F F
5 simpr1 A B C D E F D
6 3 4 5 subdid A B C D E F B A F D = B A F B A D
7 1 2 4 subdird A B C D E F B A F = B F A F
8 1 2 5 subdird A B C D E F B A D = B D A D
9 7 8 oveq12d A B C D E F B A F B A D = B F - A F - B D A D
10 simp2 A B C B
11 simp3 D E F F
12 mulcl B F B F
13 10 11 12 syl2an A B C D E F B F
14 simp1 A B C A
15 mulcl A F A F
16 14 11 15 syl2an A B C D E F A F
17 13 16 subcld A B C D E F B F A F
18 simp1 D E F D
19 mulcl B D B D
20 10 18 19 syl2an A B C D E F B D
21 mulcl A D A D
22 14 18 21 syl2an A B C D E F A D
23 17 20 22 subsub3d A B C D E F B F - A F - B D A D = B F A F + A D - B D
24 17 22 20 addsubd A B C D E F B F A F + A D - B D = B F A F - B D + A D
25 9 23 24 3eqtrrd A B C D E F B F A F - B D + A D = B A F B A D
26 13 16 20 subsub4d A B C D E F B F - A F - B D = B F A F + B D
27 26 oveq1d A B C D E F B F A F - B D + A D = B F - A F + B D + A D
28 6 25 27 3eqtr2d A B C D E F B A F D = B F - A F + B D + A D
29 simpr2 A B C D E F E
30 29 5 subcld A B C D E F E D
31 simpl3 A B C D E F C
32 31 2 subcld A B C D E F C A
33 30 32 mulcomd A B C D E F E D C A = C A E D
34 32 29 5 subdid A B C D E F C A E D = C A E C A D
35 31 2 29 subdird A B C D E F C A E = C E A E
36 31 2 5 subdird A B C D E F C A D = C D A D
37 35 36 oveq12d A B C D E F C A E C A D = C E - A E - C D A D
38 simp3 A B C C
39 simp2 D E F E
40 mulcl C E C E
41 38 39 40 syl2an A B C D E F C E
42 mulcl A E A E
43 14 39 42 syl2an A B C D E F A E
44 41 43 subcld A B C D E F C E A E
45 mulcl C D C D
46 38 18 45 syl2an A B C D E F C D
47 44 46 22 subsub3d A B C D E F C E - A E - C D A D = C E A E + A D - C D
48 44 22 46 addsubd A B C D E F C E A E + A D - C D = C E A E - C D + A D
49 37 47 48 3eqtrrd A B C D E F C E A E - C D + A D = C A E C A D
50 41 43 46 subsub4d A B C D E F C E - A E - C D = C E A E + C D
51 50 oveq1d A B C D E F C E A E - C D + A D = C E - A E + C D + A D
52 49 51 eqtr3d A B C D E F C A E C A D = C E - A E + C D + A D
53 33 34 52 3eqtrd A B C D E F E D C A = C E - A E + C D + A D
54 28 53 eqeq12d A B C D E F B A F D = E D C A B F - A F + B D + A D = C E - A E + C D + A D
55 16 20 addcld A B C D E F A F + B D
56 13 55 subcld A B C D E F B F A F + B D
57 43 46 addcld A B C D E F A E + C D
58 41 57 subcld A B C D E F C E A E + C D
59 56 58 22 addcan2d A B C D E F B F - A F + B D + A D = C E - A E + C D + A D B F A F + B D = C E A E + C D
60 54 59 bitrd A B C D E F B A F D = E D C A B F A F + B D = C E A E + C D