Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|
2 |
|
simpl |
|
3 |
|
fveecn |
|
4 |
1 2 3
|
syl2an |
|
5 |
|
simp2 |
|
6 |
|
fveecn |
|
7 |
5 2 6
|
syl2an |
|
8 |
|
simp3 |
|
9 |
|
fveecn |
|
10 |
8 2 9
|
syl2an |
|
11 |
|
simpr |
|
12 |
|
fveecn |
|
13 |
1 11 12
|
syl2an |
|
14 |
|
fveecn |
|
15 |
5 11 14
|
syl2an |
|
16 |
|
fveecn |
|
17 |
8 11 16
|
syl2an |
|
18 |
|
simp1 |
|
19 |
|
simp3 |
|
20 |
|
mulcl |
|
21 |
18 19 20
|
syl2an |
|
22 |
|
simp2 |
|
23 |
|
simp1 |
|
24 |
|
mulcl |
|
25 |
22 23 24
|
syl2an |
|
26 |
21 25
|
addcld |
|
27 |
|
mulcl |
|
28 |
22 19 27
|
syl2an |
|
29 |
26 28
|
subcld |
|
30 |
|
simp2 |
|
31 |
|
mulcl |
|
32 |
18 30 31
|
syl2an |
|
33 |
|
simp3 |
|
34 |
|
mulcl |
|
35 |
33 23 34
|
syl2an |
|
36 |
|
mulcl |
|
37 |
33 30 36
|
syl2an |
|
38 |
35 37
|
subcld |
|
39 |
29 32 38
|
subadd2d |
|
40 |
|
eqcom |
|
41 |
39 40
|
bitrdi |
|
42 |
35 32 37
|
addsubd |
|
43 |
35 32
|
addcomd |
|
44 |
43
|
oveq1d |
|
45 |
42 44
|
eqtr3d |
|
46 |
45
|
eqeq2d |
|
47 |
41 46
|
bitrd |
|
48 |
26 28 32
|
subsub4d |
|
49 |
28 32
|
addcld |
|
50 |
21 49 25
|
subsub3d |
|
51 |
28 25 32
|
subsub3d |
|
52 |
51
|
eqcomd |
|
53 |
52
|
oveq2d |
|
54 |
25 32
|
subcld |
|
55 |
21 28 54
|
subsubd |
|
56 |
53 55
|
eqtrd |
|
57 |
48 50 56
|
3eqtr2d |
|
58 |
21 28
|
subcld |
|
59 |
58 25 32
|
addsub12d |
|
60 |
21 28 32
|
subsub4d |
|
61 |
60
|
oveq2d |
|
62 |
57 59 61
|
3eqtrd |
|
63 |
62
|
eqeq1d |
|
64 |
32 35
|
addcld |
|
65 |
|
subeqrev |
|
66 |
26 28 64 37 65
|
syl22anc |
|
67 |
47 63 66
|
3bitr3rd |
|
68 |
21 49
|
subcld |
|
69 |
25 68 38
|
addrsub |
|
70 |
35 37 25
|
sub32d |
|
71 |
35 25 37
|
subsub4d |
|
72 |
70 71
|
eqtrd |
|
73 |
72
|
eqeq2d |
|
74 |
69 73
|
bitrd |
|
75 |
|
eqcom |
|
76 |
74 75
|
bitrdi |
|
77 |
67 76
|
bitrd |
|
78 |
|
colinearalglem1 |
|
79 |
|
3anrot |
|
80 |
|
3anrot |
|
81 |
|
colinearalglem1 |
|
82 |
79 80 81
|
syl2anb |
|
83 |
77 78 82
|
3bitr4d |
|
84 |
4 7 10 13 15 17 83
|
syl33anc |
|
85 |
84
|
2ralbidva |
|