Metamath Proof Explorer


Theorem colinearalglem2

Description: Lemma for colinearalg . Translate between two forms of the colinearity condition. (Contributed by Scott Fenton, 24-Jun-2013)

Ref Expression
Assertion colinearalglem2 A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N j 1 N C i B i A j B j = C j B j A i B i

Proof

Step Hyp Ref Expression
1 simp1 A 𝔼 N B 𝔼 N C 𝔼 N A 𝔼 N
2 simpl i 1 N j 1 N i 1 N
3 fveecn A 𝔼 N i 1 N A i
4 1 2 3 syl2an A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N A i
5 simp2 A 𝔼 N B 𝔼 N C 𝔼 N B 𝔼 N
6 fveecn B 𝔼 N i 1 N B i
7 5 2 6 syl2an A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i
8 simp3 A 𝔼 N B 𝔼 N C 𝔼 N C 𝔼 N
9 fveecn C 𝔼 N i 1 N C i
10 8 2 9 syl2an A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N C i
11 simpr i 1 N j 1 N j 1 N
12 fveecn A 𝔼 N j 1 N A j
13 1 11 12 syl2an A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N A j
14 fveecn B 𝔼 N j 1 N B j
15 5 11 14 syl2an A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B j
16 fveecn C 𝔼 N j 1 N C j
17 8 11 16 syl2an A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N C j
18 simp1 A i B i C i A i
19 simp3 A j B j C j C j
20 mulcl A i C j A i C j
21 18 19 20 syl2an A i B i C i A j B j C j A i C j
22 simp2 A i B i C i B i
23 simp1 A j B j C j A j
24 mulcl B i A j B i A j
25 22 23 24 syl2an A i B i C i A j B j C j B i A j
26 21 25 addcld A i B i C i A j B j C j A i C j + B i A j
27 mulcl B i C j B i C j
28 22 19 27 syl2an A i B i C i A j B j C j B i C j
29 26 28 subcld A i B i C i A j B j C j A i C j + B i A j - B i C j
30 simp2 A j B j C j B j
31 mulcl A i B j A i B j
32 18 30 31 syl2an A i B i C i A j B j C j A i B j
33 simp3 A i B i C i C i
34 mulcl C i A j C i A j
35 33 23 34 syl2an A i B i C i A j B j C j C i A j
36 mulcl C i B j C i B j
37 33 30 36 syl2an A i B i C i A j B j C j C i B j
38 35 37 subcld A i B i C i A j B j C j C i A j C i B j
39 29 32 38 subadd2d A i B i C i A j B j C j A i C j + B i A j - B i C j - A i B j = C i A j C i B j C i A j - C i B j + A i B j = A i C j + B i A j - B i C j
40 eqcom C i A j - C i B j + A i B j = A i C j + B i A j - B i C j A i C j + B i A j - B i C j = C i A j - C i B j + A i B j
41 39 40 bitrdi A i B i C i A j B j C j A i C j + B i A j - B i C j - A i B j = C i A j C i B j A i C j + B i A j - B i C j = C i A j - C i B j + A i B j
42 35 32 37 addsubd A i B i C i A j B j C j C i A j + A i B j - C i B j = C i A j - C i B j + A i B j
43 35 32 addcomd A i B i C i A j B j C j C i A j + A i B j = A i B j + C i A j
44 43 oveq1d A i B i C i A j B j C j C i A j + A i B j - C i B j = A i B j + C i A j - C i B j
45 42 44 eqtr3d A i B i C i A j B j C j C i A j - C i B j + A i B j = A i B j + C i A j - C i B j
46 45 eqeq2d A i B i C i A j B j C j A i C j + B i A j - B i C j = C i A j - C i B j + A i B j A i C j + B i A j - B i C j = A i B j + C i A j - C i B j
47 41 46 bitrd A i B i C i A j B j C j A i C j + B i A j - B i C j - A i B j = C i A j C i B j A i C j + B i A j - B i C j = A i B j + C i A j - C i B j
48 26 28 32 subsub4d A i B i C i A j B j C j A i C j + B i A j - B i C j - A i B j = A i C j + B i A j - B i C j + A i B j
49 28 32 addcld A i B i C i A j B j C j B i C j + A i B j
50 21 49 25 subsub3d A i B i C i A j B j C j A i C j B i C j + A i B j - B i A j = A i C j + B i A j - B i C j + A i B j
51 28 25 32 subsub3d A i B i C i A j B j C j B i C j B i A j A i B j = B i C j + A i B j - B i A j
52 51 eqcomd A i B i C i A j B j C j B i C j + A i B j - B i A j = B i C j B i A j A i B j
53 52 oveq2d A i B i C i A j B j C j A i C j B i C j + A i B j - B i A j = A i C j B i C j B i A j A i B j
54 25 32 subcld A i B i C i A j B j C j B i A j A i B j
55 21 28 54 subsubd A i B i C i A j B j C j A i C j B i C j B i A j A i B j = A i C j B i C j + B i A j - A i B j
56 53 55 eqtrd A i B i C i A j B j C j A i C j B i C j + A i B j - B i A j = A i C j B i C j + B i A j - A i B j
57 48 50 56 3eqtr2d A i B i C i A j B j C j A i C j + B i A j - B i C j - A i B j = A i C j B i C j + B i A j - A i B j
58 21 28 subcld A i B i C i A j B j C j A i C j B i C j
59 58 25 32 addsub12d A i B i C i A j B j C j A i C j B i C j + B i A j - A i B j = B i A j + A i C j B i C j - A i B j
60 21 28 32 subsub4d A i B i C i A j B j C j A i C j - B i C j - A i B j = A i C j B i C j + A i B j
61 60 oveq2d A i B i C i A j B j C j B i A j + A i C j B i C j - A i B j = B i A j + A i C j - B i C j + A i B j
62 57 59 61 3eqtrd A i B i C i A j B j C j A i C j + B i A j - B i C j - A i B j = B i A j + A i C j - B i C j + A i B j
63 62 eqeq1d A i B i C i A j B j C j A i C j + B i A j - B i C j - A i B j = C i A j C i B j B i A j + A i C j - B i C j + A i B j = C i A j C i B j
64 32 35 addcld A i B i C i A j B j C j A i B j + C i A j
65 subeqrev A i C j + B i A j B i C j A i B j + C i A j C i B j A i C j + B i A j - B i C j = A i B j + C i A j - C i B j B i C j A i C j + B i A j = C i B j A i B j + C i A j
66 26 28 64 37 65 syl22anc A i B i C i A j B j C j A i C j + B i A j - B i C j = A i B j + C i A j - C i B j B i C j A i C j + B i A j = C i B j A i B j + C i A j
67 47 63 66 3bitr3rd A i B i C i A j B j C j B i C j A i C j + B i A j = C i B j A i B j + C i A j B i A j + A i C j - B i C j + A i B j = C i A j C i B j
68 21 49 subcld A i B i C i A j B j C j A i C j B i C j + A i B j
69 25 68 38 addrsub A i B i C i A j B j C j B i A j + A i C j - B i C j + A i B j = C i A j C i B j A i C j B i C j + A i B j = C i A j - C i B j - B i A j
70 35 37 25 sub32d A i B i C i A j B j C j C i A j - C i B j - B i A j = C i A j - B i A j - C i B j
71 35 25 37 subsub4d A i B i C i A j B j C j C i A j - B i A j - C i B j = C i A j B i A j + C i B j
72 70 71 eqtrd A i B i C i A j B j C j C i A j - C i B j - B i A j = C i A j B i A j + C i B j
73 72 eqeq2d A i B i C i A j B j C j A i C j B i C j + A i B j = C i A j - C i B j - B i A j A i C j B i C j + A i B j = C i A j B i A j + C i B j
74 69 73 bitrd A i B i C i A j B j C j B i A j + A i C j - B i C j + A i B j = C i A j C i B j A i C j B i C j + A i B j = C i A j B i A j + C i B j
75 eqcom A i C j B i C j + A i B j = C i A j B i A j + C i B j C i A j B i A j + C i B j = A i C j B i C j + A i B j
76 74 75 bitrdi A i B i C i A j B j C j B i A j + A i C j - B i C j + A i B j = C i A j C i B j C i A j B i A j + C i B j = A i C j B i C j + A i B j
77 67 76 bitrd A i B i C i A j B j C j B i C j A i C j + B i A j = C i B j A i B j + C i A j C i A j B i A j + C i B j = A i C j B i C j + A i B j
78 colinearalglem1 A i B i C i A j B j C j B i A i C j A j = B j A j C i A i B i C j A i C j + B i A j = C i B j A i B j + C i A j
79 3anrot A i B i C i B i C i A i
80 3anrot A j B j C j B j C j A j
81 colinearalglem1 B i C i A i B j C j A j C i B i A j B j = C j B j A i B i C i A j B i A j + C i B j = A i C j B i C j + A i B j
82 79 80 81 syl2anb A i B i C i A j B j C j C i B i A j B j = C j B j A i B i C i A j B i A j + C i B j = A i C j B i C j + A i B j
83 77 78 82 3bitr4d A i B i C i A j B j C j B i A i C j A j = B j A j C i A i C i B i A j B j = C j B j A i B i
84 4 7 10 13 15 17 83 syl33anc A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i A i C j A j = B j A j C i A i C i B i A j B j = C j B j A i B i
85 84 2ralbidva A 𝔼 N B 𝔼 N C 𝔼 N i 1 N j 1 N B i A i C j A j = B j A j C i A i i 1 N j 1 N C i B i A j B j = C j B j A i B i