Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
2 |
|
simpl |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑖 ∈ ( 1 ... 𝑁 ) ) |
3 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
5 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
6 |
|
fveecn |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) |
7 |
5 2 6
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) |
8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
|
fveecn |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
10 |
8 2 9
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
11 |
|
simpr |
⊢ ( ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → 𝑗 ∈ ( 1 ... 𝑁 ) ) |
12 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
13 |
1 11 12
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
14 |
|
fveecn |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) |
15 |
5 11 14
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) |
16 |
|
fveecn |
⊢ ( ( 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
17 |
8 11 16
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
18 |
|
simp1 |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
19 |
|
simp3 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) |
20 |
|
mulcl |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
21 |
18 19 20
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
22 |
|
simp2 |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) |
23 |
|
simp1 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) |
24 |
|
mulcl |
⊢ ( ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
25 |
22 23 24
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
26 |
21 25
|
addcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ) |
27 |
|
mulcl |
⊢ ( ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
28 |
22 19 27
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) |
29 |
26 28
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ∈ ℂ ) |
30 |
|
simp2 |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) → ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) |
31 |
|
mulcl |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
32 |
18 30 31
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
33 |
|
simp3 |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) → ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) |
34 |
|
mulcl |
⊢ ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
35 |
33 23 34
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ∈ ℂ ) |
36 |
|
mulcl |
⊢ ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
37 |
33 30 36
|
syl2an |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) |
38 |
35 37
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ∈ ℂ ) |
39 |
29 32 38
|
subadd2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ) ) |
40 |
|
eqcom |
⊢ ( ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
41 |
39 40
|
bitrdi |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
42 |
35 32 37
|
addsubd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
43 |
35 32
|
addcomd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
44 |
43
|
oveq1d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
45 |
42 44
|
eqtr3d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
46 |
45
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
47 |
41 46
|
bitrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
48 |
26 28 32
|
subsub4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
49 |
28 32
|
addcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ∈ ℂ ) |
50 |
21 49 25
|
subsub3d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
51 |
28 25 32
|
subsub3d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) |
52 |
51
|
eqcomd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
53 |
52
|
oveq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
54 |
25 32
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ∈ ℂ ) |
55 |
21 28 54
|
subsubd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
56 |
53 55
|
eqtrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
57 |
48 50 56
|
3eqtr2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
58 |
21 28
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) ∈ ℂ ) |
59 |
58 25 32
|
addsub12d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) + ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
60 |
21 28 32
|
subsub4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
61 |
60
|
oveq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
62 |
57 59 61
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
63 |
62
|
eqeq1d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) − ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
64 |
32 35
|
addcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ) |
65 |
|
subeqrev |
⊢ ( ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ∧ ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ∈ ℂ ) ∧ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ∈ ℂ ∧ ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) ) |
66 |
26 28 64 37 65
|
syl22anc |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) ) |
67 |
47 63 66
|
3bitr3rd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
68 |
21 49
|
subcld |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ∈ ℂ ) |
69 |
25 68 38
|
addrsub |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) |
70 |
35 37 25
|
sub32d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) |
71 |
35 25 37
|
subsub4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
72 |
70 71
|
eqtrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
73 |
72
|
eqeq2d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) − ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
74 |
69 73
|
bitrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
75 |
|
eqcom |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) |
76 |
74 75
|
bitrdi |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
77 |
67 76
|
bitrd |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
78 |
|
colinearalglem1 |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) − ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) ) ) ) ) |
79 |
|
3anrot |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ↔ ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) ) |
80 |
|
3anrot |
⊢ ( ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ↔ ( ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) ) |
81 |
|
colinearalglem1 |
⊢ ( ( ( ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐴 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
82 |
79 80 81
|
syl2anb |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐴 ‘ 𝑗 ) ) + ( ( 𝐶 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) = ( ( ( 𝐴 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) − ( ( ( 𝐵 ‘ 𝑖 ) · ( 𝐶 ‘ 𝑗 ) ) + ( ( 𝐴 ‘ 𝑖 ) · ( 𝐵 ‘ 𝑗 ) ) ) ) ) ) |
83 |
77 78 82
|
3bitr4d |
⊢ ( ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑖 ) ∈ ℂ ) ∧ ( ( 𝐴 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑗 ) ∈ ℂ ∧ ( 𝐶 ‘ 𝑗 ) ∈ ℂ ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
84 |
4 7 10 13 15 17 83
|
syl33anc |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝑖 ∈ ( 1 ... 𝑁 ) ∧ 𝑗 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) ) |
85 |
84
|
2ralbidva |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) · ( ( 𝐶 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) ) = ( ( ( 𝐵 ‘ 𝑗 ) − ( 𝐴 ‘ 𝑗 ) ) · ( ( 𝐶 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ) ↔ ∀ 𝑖 ∈ ( 1 ... 𝑁 ) ∀ 𝑗 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐶 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) · ( ( 𝐴 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) ) = ( ( ( 𝐶 ‘ 𝑗 ) − ( 𝐵 ‘ 𝑗 ) ) · ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ) ) ) |