Metamath Proof Explorer
Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013)
|
|
Ref |
Expression |
|
Assertion |
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝐼 ) ∈ ℂ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
fveere |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝐼 ) ∈ ℝ ) |
2 |
1
|
recnd |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝐼 ) ∈ ℂ ) |