Metamath Proof Explorer


Theorem fveecn

Description: The function value of a point is a complex. (Contributed by Scott Fenton, 10-Jun-2013)

Ref Expression
Assertion fveecn ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴𝐼 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 fveere ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴𝐼 ) ∈ ℝ )
2 1 recnd ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐼 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴𝐼 ) ∈ ℂ )