Step |
Hyp |
Ref |
Expression |
1 |
|
brbtwn2 |
|
2 |
|
brbtwn2 |
|
3 |
2
|
3comr |
|
4 |
|
colinearalglem3 |
|
5 |
4
|
3comr |
|
6 |
5
|
anbi2d |
|
7 |
3 6
|
bitrd |
|
8 |
|
brbtwn2 |
|
9 |
|
colinearalglem2 |
|
10 |
9
|
anbi2d |
|
11 |
8 10
|
bitrd |
|
12 |
11
|
3coml |
|
13 |
1 7 12
|
3orbi123d |
|
14 |
|
fveecn |
|
15 |
|
fveecn |
|
16 |
|
subid |
|
17 |
16
|
oveq2d |
|
18 |
17
|
adantl |
|
19 |
|
subcl |
|
20 |
19
|
mul01d |
|
21 |
18 20
|
eqtrd |
|
22 |
14 15 21
|
syl2an |
|
23 |
22
|
anandirs |
|
24 |
|
0le0 |
|
25 |
23 24
|
eqbrtrdi |
|
26 |
25
|
ralrimiva |
|
27 |
26
|
3adant1 |
|
28 |
|
fveq1 |
|
29 |
28
|
oveq2d |
|
30 |
28
|
oveq2d |
|
31 |
29 30
|
oveq12d |
|
32 |
31
|
breq1d |
|
33 |
32
|
ralbidv |
|
34 |
27 33
|
syl5ibcom |
|
35 |
|
3mix1 |
|
36 |
34 35
|
syl6 |
|
37 |
36
|
a1dd |
|
38 |
|
simp3 |
|
39 |
|
simp1 |
|
40 |
|
eqeefv |
|
41 |
38 39 40
|
syl2anc |
|
42 |
41
|
necon3abid |
|
43 |
|
df-ne |
|
44 |
43
|
rexbii |
|
45 |
|
rexnal |
|
46 |
44 45
|
bitr2i |
|
47 |
42 46
|
bitrdi |
|
48 |
|
ralcom |
|
49 |
|
fveq2 |
|
50 |
|
fveq2 |
|
51 |
49 50
|
oveq12d |
|
52 |
51
|
oveq2d |
|
53 |
|
fveq2 |
|
54 |
53 50
|
oveq12d |
|
55 |
54
|
oveq1d |
|
56 |
52 55
|
eqeq12d |
|
57 |
56
|
ralbidv |
|
58 |
57
|
rspcv |
|
59 |
58
|
ad2antrl |
|
60 |
|
fveere |
|
61 |
60
|
3ad2antl1 |
|
62 |
|
fveere |
|
63 |
62
|
3ad2antl2 |
|
64 |
|
fveere |
|
65 |
64
|
3ad2antl3 |
|
66 |
61 63 65
|
3jca |
|
67 |
66
|
anim1i |
|
68 |
67
|
anasss |
|
69 |
|
fveecn |
|
70 |
69
|
3ad2antl1 |
|
71 |
14
|
3ad2antl2 |
|
72 |
15
|
3ad2antl3 |
|
73 |
70 71 72
|
3jca |
|
74 |
73
|
adantlr |
|
75 |
|
recn |
|
76 |
|
recn |
|
77 |
|
recn |
|
78 |
75 76 77
|
3anim123i |
|
79 |
78
|
adantr |
|
80 |
79
|
ad2antlr |
|
81 |
|
simplrr |
|
82 |
|
eqcom |
|
83 |
|
simp12 |
|
84 |
|
simp11 |
|
85 |
|
simp22 |
|
86 |
|
simp21 |
|
87 |
85 86
|
subcld |
|
88 |
|
simp23 |
|
89 |
88 86
|
subcld |
|
90 |
|
simpr3 |
|
91 |
|
simpr1 |
|
92 |
90 91
|
subeq0ad |
|
93 |
92
|
necon3bid |
|
94 |
93
|
biimp3ar |
|
95 |
87 89 94
|
divcld |
|
96 |
|
simp13 |
|
97 |
96 84
|
subcld |
|
98 |
95 97
|
mulcld |
|
99 |
|
subadd2 |
|
100 |
99
|
bicomd |
|
101 |
83 84 98 100
|
syl3anc |
|
102 |
87 97 89 94
|
div23d |
|
103 |
102
|
eqeq2d |
|
104 |
|
eqcom |
|
105 |
87 97
|
mulcld |
|
106 |
83 84
|
subcld |
|
107 |
105 89 106 94
|
divmuld |
|
108 |
89 106
|
mulcomd |
|
109 |
108
|
eqeq1d |
|
110 |
107 109
|
bitrd |
|
111 |
104 110
|
syl5bb |
|
112 |
101 103 111
|
3bitr2d |
|
113 |
82 112
|
syl5bb |
|
114 |
74 80 81 113
|
syl3anc |
|
115 |
114
|
ralbidva |
|
116 |
|
3simpb |
|
117 |
|
simpl2 |
|
118 |
|
simpl1 |
|
119 |
117 118
|
resubcld |
|
120 |
|
simpl3 |
|
121 |
120 118
|
resubcld |
|
122 |
|
simp3 |
|
123 |
122
|
recnd |
|
124 |
75
|
3ad2ant1 |
|
125 |
123 124
|
subeq0ad |
|
126 |
125
|
necon3bid |
|
127 |
126
|
biimpar |
|
128 |
119 121 127
|
redivcld |
|
129 |
|
colinearalglem4 |
|
130 |
|
oveq1 |
|
131 |
130
|
oveq1d |
|
132 |
131
|
breq1d |
|
133 |
132
|
ralimi |
|
134 |
|
ralbi |
|
135 |
133 134
|
syl |
|
136 |
|
oveq2 |
|
137 |
|
oveq2 |
|
138 |
136 137
|
oveq12d |
|
139 |
138
|
breq1d |
|
140 |
139
|
ralimi |
|
141 |
|
ralbi |
|
142 |
140 141
|
syl |
|
143 |
|
oveq1 |
|
144 |
143
|
oveq2d |
|
145 |
144
|
breq1d |
|
146 |
145
|
ralimi |
|
147 |
|
ralbi |
|
148 |
146 147
|
syl |
|
149 |
135 142 148
|
3orbi123d |
|
150 |
129 149
|
syl5ibrcom |
|
151 |
116 128 150
|
syl2an |
|
152 |
115 151
|
sylbird |
|
153 |
68 152
|
syldan |
|
154 |
59 153
|
syld |
|
155 |
48 154
|
syl5bi |
|
156 |
155
|
rexlimdvaa |
|
157 |
47 156
|
sylbid |
|
158 |
37 157
|
pm2.61dne |
|
159 |
158
|
pm4.71rd |
|
160 |
|
andir |
|
161 |
160
|
orbi1i |
|
162 |
|
df-3or |
|
163 |
162
|
anbi1i |
|
164 |
|
andir |
|
165 |
163 164
|
bitri |
|
166 |
|
df-3or |
|
167 |
161 165 166
|
3bitr4i |
|
168 |
159 167
|
bitr2di |
|
169 |
13 168
|
bitrd |
|