Step |
Hyp |
Ref |
Expression |
1 |
|
relin01 |
|
2 |
1
|
adantl |
|
3 |
|
fveere |
|
4 |
3
|
adantlr |
|
5 |
|
fveere |
|
6 |
5
|
adantll |
|
7 |
4 6
|
jca |
|
8 |
|
simprl |
|
9 |
8
|
recnd |
|
10 |
|
resubcl |
|
11 |
10
|
ancoms |
|
12 |
11
|
adantr |
|
13 |
12
|
recnd |
|
14 |
9 13 13
|
mulassd |
|
15 |
8 12
|
remulcld |
|
16 |
15
|
recnd |
|
17 |
|
recn |
|
18 |
17
|
ad2antrr |
|
19 |
16 18
|
pncand |
|
20 |
19
|
oveq1d |
|
21 |
13
|
sqvald |
|
22 |
21
|
oveq2d |
|
23 |
14 20 22
|
3eqtr4d |
|
24 |
|
simprr |
|
25 |
12
|
sqge0d |
|
26 |
24 25
|
jca |
|
27 |
26
|
orcd |
|
28 |
12
|
resqcld |
|
29 |
|
mulle0b |
|
30 |
8 28 29
|
syl2anc |
|
31 |
27 30
|
mpbird |
|
32 |
23 31
|
eqbrtrd |
|
33 |
7 32
|
sylan |
|
34 |
33
|
an32s |
|
35 |
34
|
ralrimiva |
|
36 |
35
|
expr |
|
37 |
|
recn |
|
38 |
37
|
ad2antlr |
|
39 |
17
|
ad2antrr |
|
40 |
|
simprl |
|
41 |
11
|
adantr |
|
42 |
40 41
|
remulcld |
|
43 |
42
|
recnd |
|
44 |
38 39 43
|
sub32d |
|
45 |
|
ax-1cn |
|
46 |
40
|
recnd |
|
47 |
41
|
recnd |
|
48 |
|
subdir |
|
49 |
45 46 47 48
|
mp3an2i |
|
50 |
47
|
mulid2d |
|
51 |
50
|
oveq1d |
|
52 |
49 51
|
eqtr2d |
|
53 |
38 43 39
|
subsub4d |
|
54 |
44 52 53
|
3eqtr3rd |
|
55 |
39 39 43
|
sub32d |
|
56 |
39
|
subidd |
|
57 |
56
|
oveq1d |
|
58 |
|
df-neg |
|
59 |
57 58
|
eqtr4di |
|
60 |
39 43 39
|
subsub4d |
|
61 |
55 59 60
|
3eqtr3rd |
|
62 |
54 61
|
oveq12d |
|
63 |
|
1re |
|
64 |
|
resubcl |
|
65 |
63 64
|
mpan |
|
66 |
65
|
ad2antrl |
|
67 |
66 41
|
remulcld |
|
68 |
67
|
recnd |
|
69 |
68 43
|
mulneg2d |
|
70 |
66
|
recnd |
|
71 |
70 47 46 47
|
mul4d |
|
72 |
71
|
negeqd |
|
73 |
62 69 72
|
3eqtrd |
|
74 |
66 40
|
remulcld |
|
75 |
41
|
resqcld |
|
76 |
|
simpl |
|
77 |
63 76 64
|
sylancr |
|
78 |
|
subge0 |
|
79 |
63 78
|
mpan |
|
80 |
79
|
biimpar |
|
81 |
80
|
adantrl |
|
82 |
|
simprl |
|
83 |
77 76 81 82
|
mulge0d |
|
84 |
83
|
adantl |
|
85 |
41
|
sqge0d |
|
86 |
74 75 84 85
|
mulge0d |
|
87 |
47
|
sqvald |
|
88 |
87
|
oveq2d |
|
89 |
86 88
|
breqtrd |
|
90 |
41 41
|
remulcld |
|
91 |
74 90
|
remulcld |
|
92 |
91
|
le0neg2d |
|
93 |
89 92
|
mpbid |
|
94 |
73 93
|
eqbrtrd |
|
95 |
7 94
|
sylan |
|
96 |
95
|
an32s |
|
97 |
96
|
ralrimiva |
|
98 |
97
|
expr |
|
99 |
37
|
ad2antlr |
|
100 |
17
|
ad2antrr |
|
101 |
99 100
|
negsubdi2d |
|
102 |
101
|
oveq1d |
|
103 |
|
simplr |
|
104 |
|
simpll |
|
105 |
103 104 10
|
syl2anc |
|
106 |
105
|
recnd |
|
107 |
|
peano2rem |
|
108 |
107
|
ad2antrl |
|
109 |
108 105
|
remulcld |
|
110 |
109
|
recnd |
|
111 |
106 110
|
mulneg1d |
|
112 |
108
|
recnd |
|
113 |
106 112 106
|
mul12d |
|
114 |
106
|
sqvald |
|
115 |
114
|
oveq2d |
|
116 |
113 115
|
eqtr4d |
|
117 |
116
|
negeqd |
|
118 |
111 117
|
eqtrd |
|
119 |
|
simprl |
|
120 |
119
|
recnd |
|
121 |
|
subdir |
|
122 |
45 121
|
mp3an2 |
|
123 |
120 106 122
|
syl2anc |
|
124 |
106
|
mulid2d |
|
125 |
124
|
oveq2d |
|
126 |
119 105
|
remulcld |
|
127 |
126
|
recnd |
|
128 |
127 99 100
|
subsub3d |
|
129 |
123 125 128
|
3eqtrd |
|
130 |
129
|
oveq2d |
|
131 |
102 118 130
|
3eqtr3rd |
|
132 |
105
|
resqcld |
|
133 |
|
simprr |
|
134 |
|
subge0 |
|
135 |
63 134
|
mpan2 |
|
136 |
135
|
ad2antrl |
|
137 |
133 136
|
mpbird |
|
138 |
105
|
sqge0d |
|
139 |
108 132 137 138
|
mulge0d |
|
140 |
108 132
|
remulcld |
|
141 |
140
|
le0neg2d |
|
142 |
139 141
|
mpbid |
|
143 |
131 142
|
eqbrtrd |
|
144 |
7 143
|
sylan |
|
145 |
144
|
an32s |
|
146 |
145
|
ralrimiva |
|
147 |
146
|
expr |
|
148 |
36 98 147
|
3orim123d |
|
149 |
2 148
|
mpd |
|