Metamath Proof Explorer


Theorem relin01

Description: An interval law for less than or equal. (Contributed by Scott Fenton, 27-Jun-2013)

Ref Expression
Assertion relin01 A A 0 0 A A 1 1 A

Proof

Step Hyp Ref Expression
1 1re 1
2 letric A 1 A 1 1 A
3 1 2 mpan2 A A 1 1 A
4 0re 0
5 letric A 0 A 0 0 A
6 4 5 mpan2 A A 0 0 A
7 pm3.21 A 1 0 A 0 A A 1
8 7 orim2d A 1 A 0 0 A A 0 0 A A 1
9 6 8 syl5com A A 1 A 0 0 A A 1
10 9 orim1d A A 1 1 A A 0 0 A A 1 1 A
11 3 10 mpd A A 0 0 A A 1 1 A
12 df-3or A 0 0 A A 1 1 A A 0 0 A A 1 1 A
13 11 12 sylibr A A 0 0 A A 1 1 A