Metamath Proof Explorer


Theorem mulle0b

Description: A condition for multiplication to be nonpositive. (Contributed by Scott Fenton, 25-Jun-2013)

Ref Expression
Assertion mulle0b ABAB0A00B0AB0

Proof

Step Hyp Ref Expression
1 remulcl ABAB
2 1 le0neg1d ABAB00AB
3 le0neg2 B0BB0
4 3 anbi2d BA00BA0B0
5 le0neg1 BB00B
6 5 anbi2d B0AB00A0B
7 4 6 orbi12d BA00B0AB0A0B00A0B
8 7 adantl ABA00B0AB0A0B00A0B
9 renegcl BB
10 mulge0b AB0ABA0B00A0B
11 9 10 sylan2 AB0ABA0B00A0B
12 recn AA
13 recn BB
14 mulneg2 ABAB=AB
15 14 breq2d AB0AB0AB
16 12 13 15 syl2an AB0AB0AB
17 8 11 16 3bitr2rd AB0ABA00B0AB0
18 2 17 bitrd ABAB0A00B0AB0