Metamath Proof Explorer


Theorem eleesub

Description: Membership of a subtraction mapping in a Euclidean space. (Contributed by Scott Fenton, 17-Jul-2013)

Ref Expression
Hypothesis eleesub.1 C = i 1 N A i B i
Assertion eleesub A 𝔼 N B 𝔼 N C 𝔼 N

Proof

Step Hyp Ref Expression
1 eleesub.1 C = i 1 N A i B i
2 fveere A 𝔼 N i 1 N A i
3 fveere B 𝔼 N i 1 N B i
4 resubcl A i B i A i B i
5 2 3 4 syl2an A 𝔼 N i 1 N B 𝔼 N i 1 N A i B i
6 5 anandirs A 𝔼 N B 𝔼 N i 1 N A i B i
7 6 ralrimiva A 𝔼 N B 𝔼 N i 1 N A i B i
8 eleenn A 𝔼 N N
9 mptelee N i 1 N A i B i 𝔼 N i 1 N A i B i
10 8 9 syl A 𝔼 N i 1 N A i B i 𝔼 N i 1 N A i B i
11 10 adantr A 𝔼 N B 𝔼 N i 1 N A i B i 𝔼 N i 1 N A i B i
12 7 11 mpbird A 𝔼 N B 𝔼 N i 1 N A i B i 𝔼 N
13 1 12 eqeltrid A 𝔼 N B 𝔼 N C 𝔼 N