Metamath Proof Explorer


Theorem eleesubd

Description: Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub . (Contributed by Scott Fenton, 17-Jul-2013)

Ref Expression
Hypothesis eleesubd.1 φ C = i 1 N A i B i
Assertion eleesubd φ A 𝔼 N B 𝔼 N C 𝔼 N

Proof

Step Hyp Ref Expression
1 eleesubd.1 φ C = i 1 N A i B i
2 1 3ad2ant1 φ A 𝔼 N B 𝔼 N C = i 1 N A i B i
3 fveere A 𝔼 N i 1 N A i
4 fveere B 𝔼 N i 1 N B i
5 resubcl A i B i A i B i
6 3 4 5 syl2an A 𝔼 N i 1 N B 𝔼 N i 1 N A i B i
7 6 anandirs A 𝔼 N B 𝔼 N i 1 N A i B i
8 7 ralrimiva A 𝔼 N B 𝔼 N i 1 N A i B i
9 eleenn A 𝔼 N N
10 mptelee N i 1 N A i B i 𝔼 N i 1 N A i B i
11 9 10 syl A 𝔼 N i 1 N A i B i 𝔼 N i 1 N A i B i
12 11 adantr A 𝔼 N B 𝔼 N i 1 N A i B i 𝔼 N i 1 N A i B i
13 8 12 mpbird A 𝔼 N B 𝔼 N i 1 N A i B i 𝔼 N
14 13 3adant1 φ A 𝔼 N B 𝔼 N i 1 N A i B i 𝔼 N
15 2 14 eqeltrd φ A 𝔼 N B 𝔼 N C 𝔼 N