Metamath Proof Explorer


Theorem eleesubd

Description: Membership of a subtraction mapping in a Euclidean space. Deduction form of eleesub . (Contributed by Scott Fenton, 17-Jul-2013)

Ref Expression
Hypothesis eleesubd.1 φC=i1NAiBi
Assertion eleesubd φA𝔼NB𝔼NC𝔼N

Proof

Step Hyp Ref Expression
1 eleesubd.1 φC=i1NAiBi
2 1 3ad2ant1 φA𝔼NB𝔼NC=i1NAiBi
3 fveere A𝔼Ni1NAi
4 fveere B𝔼Ni1NBi
5 resubcl AiBiAiBi
6 3 4 5 syl2an A𝔼Ni1NB𝔼Ni1NAiBi
7 6 anandirs A𝔼NB𝔼Ni1NAiBi
8 7 ralrimiva A𝔼NB𝔼Ni1NAiBi
9 eleenn A𝔼NN
10 mptelee Ni1NAiBi𝔼Ni1NAiBi
11 9 10 syl A𝔼Ni1NAiBi𝔼Ni1NAiBi
12 11 adantr A𝔼NB𝔼Ni1NAiBi𝔼Ni1NAiBi
13 8 12 mpbird A𝔼NB𝔼Ni1NAiBi𝔼N
14 13 3adant1 φA𝔼NB𝔼Ni1NAiBi𝔼N
15 2 14 eqeltrd φA𝔼NB𝔼NC𝔼N