| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleesubd.1 |
|- ( ph -> C = ( i e. ( 1 ... N ) |-> ( ( A ` i ) - ( B ` i ) ) ) ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( ph /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> C = ( i e. ( 1 ... N ) |-> ( ( A ` i ) - ( B ` i ) ) ) ) |
| 3 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
| 4 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
| 5 |
|
resubcl |
|- ( ( ( A ` i ) e. RR /\ ( B ` i ) e. RR ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) /\ ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
| 7 |
6
|
anandirs |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
| 8 |
7
|
ralrimiva |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> A. i e. ( 1 ... N ) ( ( A ` i ) - ( B ` i ) ) e. RR ) |
| 9 |
|
eleenn |
|- ( A e. ( EE ` N ) -> N e. NN ) |
| 10 |
|
mptelee |
|- ( N e. NN -> ( ( i e. ( 1 ... N ) |-> ( ( A ` i ) - ( B ` i ) ) ) e. ( EE ` N ) <-> A. i e. ( 1 ... N ) ( ( A ` i ) - ( B ` i ) ) e. RR ) ) |
| 11 |
9 10
|
syl |
|- ( A e. ( EE ` N ) -> ( ( i e. ( 1 ... N ) |-> ( ( A ` i ) - ( B ` i ) ) ) e. ( EE ` N ) <-> A. i e. ( 1 ... N ) ( ( A ` i ) - ( B ` i ) ) e. RR ) ) |
| 12 |
11
|
adantr |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( ( i e. ( 1 ... N ) |-> ( ( A ` i ) - ( B ` i ) ) ) e. ( EE ` N ) <-> A. i e. ( 1 ... N ) ( ( A ` i ) - ( B ` i ) ) e. RR ) ) |
| 13 |
8 12
|
mpbird |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( i e. ( 1 ... N ) |-> ( ( A ` i ) - ( B ` i ) ) ) e. ( EE ` N ) ) |
| 14 |
13
|
3adant1 |
|- ( ( ph /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( i e. ( 1 ... N ) |-> ( ( A ` i ) - ( B ` i ) ) ) e. ( EE ` N ) ) |
| 15 |
2 14
|
eqeltrd |
|- ( ( ph /\ A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> C e. ( EE ` N ) ) |