Metamath Proof Explorer


Theorem addid1

Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion addid1 A A + 0 = A

Proof

Step Hyp Ref Expression
1 1re 1
2 ax-rnegex 1 c 1 + c = 0
3 ax-1ne0 1 0
4 oveq2 c = 0 1 + c = 1 + 0
5 4 eqeq1d c = 0 1 + c = 0 1 + 0 = 0
6 5 biimpcd 1 + c = 0 c = 0 1 + 0 = 0
7 oveq2 1 + 0 = 0 i i i i 1 + 0 = i i i i 0
8 ax-icn i
9 8 8 mulcli i i
10 9 9 mulcli i i i i
11 ax-1cn 1
12 0cn 0
13 10 11 12 adddii i i i i 1 + 0 = i i i i 1 + i i i i 0
14 10 mulid1i i i i i 1 = i i i i
15 mul01 i i i i i i i i 0 = 0
16 10 15 ax-mp i i i i 0 = 0
17 ax-i2m1 i i + 1 = 0
18 16 17 eqtr4i i i i i 0 = i i + 1
19 14 18 oveq12i i i i i 1 + i i i i 0 = i i i i + i i + 1
20 13 19 eqtri i i i i 1 + 0 = i i i i + i i + 1
21 20 16 eqeq12i i i i i 1 + 0 = i i i i 0 i i i i + i i + 1 = 0
22 10 9 11 addassi i i i i + i i + 1 = i i i i + i i + 1
23 9 mulid1i i i 1 = i i
24 23 oveq2i i i i i + i i 1 = i i i i + i i
25 9 9 11 adddii i i i i + 1 = i i i i + i i 1
26 17 oveq2i i i i i + 1 = i i 0
27 mul01 i i i i 0 = 0
28 9 27 ax-mp i i 0 = 0
29 26 28 eqtri i i i i + 1 = 0
30 25 29 eqtr3i i i i i + i i 1 = 0
31 24 30 eqtr3i i i i i + i i = 0
32 31 oveq1i i i i i + i i + 1 = 0 + 1
33 22 32 eqtr3i i i i i + i i + 1 = 0 + 1
34 00id 0 + 0 = 0
35 34 eqcomi 0 = 0 + 0
36 33 35 eqeq12i i i i i + i i + 1 = 0 0 + 1 = 0 + 0
37 0re 0
38 readdcan 1 0 0 0 + 1 = 0 + 0 1 = 0
39 1 37 37 38 mp3an 0 + 1 = 0 + 0 1 = 0
40 21 36 39 3bitri i i i i 1 + 0 = i i i i 0 1 = 0
41 7 40 sylib 1 + 0 = 0 1 = 0
42 6 41 syl6 1 + c = 0 c = 0 1 = 0
43 42 necon3d 1 + c = 0 1 0 c 0
44 3 43 mpi 1 + c = 0 c 0
45 ax-rrecex c c 0 x c x = 1
46 44 45 sylan2 c 1 + c = 0 x c x = 1
47 simpr c 1 + c = 0 x c x = 1 A A
48 simplrl c 1 + c = 0 x c x = 1 A x
49 48 recnd c 1 + c = 0 x c x = 1 A x
50 47 49 mulcld c 1 + c = 0 x c x = 1 A A x
51 simplll c 1 + c = 0 x c x = 1 A c
52 51 recnd c 1 + c = 0 x c x = 1 A c
53 12 a1i c 1 + c = 0 x c x = 1 A 0
54 50 52 53 adddid c 1 + c = 0 x c x = 1 A A x c + 0 = A x c + A x 0
55 11 a1i c 1 + c = 0 x c x = 1 A 1
56 55 52 53 addassd c 1 + c = 0 x c x = 1 A 1 + c + 0 = 1 + c + 0
57 simpllr c 1 + c = 0 x c x = 1 A 1 + c = 0
58 57 oveq1d c 1 + c = 0 x c x = 1 A 1 + c + 0 = 0 + 0
59 56 58 eqtr3d c 1 + c = 0 x c x = 1 A 1 + c + 0 = 0 + 0
60 34 59 57 3eqtr4a c 1 + c = 0 x c x = 1 A 1 + c + 0 = 1 + c
61 37 a1i c 1 + c = 0 x c x = 1 A 0
62 51 61 readdcld c 1 + c = 0 x c x = 1 A c + 0
63 1 a1i c 1 + c = 0 x c x = 1 A 1
64 readdcan c + 0 c 1 1 + c + 0 = 1 + c c + 0 = c
65 62 51 63 64 syl3anc c 1 + c = 0 x c x = 1 A 1 + c + 0 = 1 + c c + 0 = c
66 60 65 mpbid c 1 + c = 0 x c x = 1 A c + 0 = c
67 66 oveq2d c 1 + c = 0 x c x = 1 A A x c + 0 = A x c
68 54 67 eqtr3d c 1 + c = 0 x c x = 1 A A x c + A x 0 = A x c
69 mul31 A x c A x c = c x A
70 47 49 52 69 syl3anc c 1 + c = 0 x c x = 1 A A x c = c x A
71 simplrr c 1 + c = 0 x c x = 1 A c x = 1
72 71 oveq1d c 1 + c = 0 x c x = 1 A c x A = 1 A
73 47 mulid2d c 1 + c = 0 x c x = 1 A 1 A = A
74 70 72 73 3eqtrd c 1 + c = 0 x c x = 1 A A x c = A
75 mul01 A x A x 0 = 0
76 50 75 syl c 1 + c = 0 x c x = 1 A A x 0 = 0
77 74 76 oveq12d c 1 + c = 0 x c x = 1 A A x c + A x 0 = A + 0
78 68 77 74 3eqtr3d c 1 + c = 0 x c x = 1 A A + 0 = A
79 78 exp42 c 1 + c = 0 x c x = 1 A A + 0 = A
80 79 rexlimdv c 1 + c = 0 x c x = 1 A A + 0 = A
81 46 80 mpd c 1 + c = 0 A A + 0 = A
82 81 rexlimiva c 1 + c = 0 A A + 0 = A
83 1 2 82 mp2b A A + 0 = A