Step |
Hyp |
Ref |
Expression |
1 |
|
1re |
|
2 |
|
ax-rnegex |
|
3 |
|
ax-1ne0 |
|
4 |
|
oveq2 |
|
5 |
4
|
eqeq1d |
|
6 |
5
|
biimpcd |
|
7 |
|
oveq2 |
|
8 |
|
ax-icn |
|
9 |
8 8
|
mulcli |
|
10 |
9 9
|
mulcli |
|
11 |
|
ax-1cn |
|
12 |
|
0cn |
|
13 |
10 11 12
|
adddii |
|
14 |
10
|
mulid1i |
|
15 |
|
mul01 |
|
16 |
10 15
|
ax-mp |
|
17 |
|
ax-i2m1 |
|
18 |
16 17
|
eqtr4i |
|
19 |
14 18
|
oveq12i |
|
20 |
13 19
|
eqtri |
|
21 |
20 16
|
eqeq12i |
|
22 |
10 9 11
|
addassi |
|
23 |
9
|
mulid1i |
|
24 |
23
|
oveq2i |
|
25 |
9 9 11
|
adddii |
|
26 |
17
|
oveq2i |
|
27 |
|
mul01 |
|
28 |
9 27
|
ax-mp |
|
29 |
26 28
|
eqtri |
|
30 |
25 29
|
eqtr3i |
|
31 |
24 30
|
eqtr3i |
|
32 |
31
|
oveq1i |
|
33 |
22 32
|
eqtr3i |
|
34 |
|
00id |
|
35 |
34
|
eqcomi |
|
36 |
33 35
|
eqeq12i |
|
37 |
|
0re |
|
38 |
|
readdcan |
|
39 |
1 37 37 38
|
mp3an |
|
40 |
21 36 39
|
3bitri |
|
41 |
7 40
|
sylib |
|
42 |
6 41
|
syl6 |
|
43 |
42
|
necon3d |
|
44 |
3 43
|
mpi |
|
45 |
|
ax-rrecex |
|
46 |
44 45
|
sylan2 |
|
47 |
|
simpr |
|
48 |
|
simplrl |
|
49 |
48
|
recnd |
|
50 |
47 49
|
mulcld |
|
51 |
|
simplll |
|
52 |
51
|
recnd |
|
53 |
12
|
a1i |
|
54 |
50 52 53
|
adddid |
|
55 |
11
|
a1i |
|
56 |
55 52 53
|
addassd |
|
57 |
|
simpllr |
|
58 |
57
|
oveq1d |
|
59 |
56 58
|
eqtr3d |
|
60 |
34 59 57
|
3eqtr4a |
|
61 |
37
|
a1i |
|
62 |
51 61
|
readdcld |
|
63 |
1
|
a1i |
|
64 |
|
readdcan |
|
65 |
62 51 63 64
|
syl3anc |
|
66 |
60 65
|
mpbid |
|
67 |
66
|
oveq2d |
|
68 |
54 67
|
eqtr3d |
|
69 |
|
mul31 |
|
70 |
47 49 52 69
|
syl3anc |
|
71 |
|
simplrr |
|
72 |
71
|
oveq1d |
|
73 |
47
|
mulid2d |
|
74 |
70 72 73
|
3eqtrd |
|
75 |
|
mul01 |
|
76 |
50 75
|
syl |
|
77 |
74 76
|
oveq12d |
|
78 |
68 77 74
|
3eqtr3d |
|
79 |
78
|
exp42 |
|
80 |
79
|
rexlimdv |
|
81 |
46 80
|
mpd |
|
82 |
81
|
rexlimiva |
|
83 |
1 2 82
|
mp2b |
|