Metamath Proof Explorer


Theorem nnncan2d

Description: Cancellation law for subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φ A
pncand.2 φ B
subaddd.3 φ C
Assertion nnncan2d φ A - C - B C = A B

Proof

Step Hyp Ref Expression
1 negidd.1 φ A
2 pncand.2 φ B
3 subaddd.3 φ C
4 nnncan2 A B C A - C - B C = A B
5 1 2 3 4 syl3anc φ A - C - B C = A B