Metamath Proof Explorer


Theorem divelunit

Description: A condition for a ratio to be a member of the closed unit interval. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion divelunit A0AB0<BAB01AB

Proof

Step Hyp Ref Expression
1 elicc01 AB01AB0ABAB1
2 df-3an AB0ABAB1AB0ABAB1
3 1 2 bitri AB01AB0ABAB1
4 1re 1
5 ledivmul A1B0<BAB1AB1
6 4 5 mp3an2 AB0<BAB1AB1
7 6 adantlr A0AB0<BAB1AB1
8 simpll A0AB0<BA
9 simprl A0AB0<BB
10 gt0ne0 B0<BB0
11 10 adantl A0AB0<BB0
12 8 9 11 redivcld A0AB0<BAB
13 divge0 A0AB0<B0AB
14 12 13 jca A0AB0<BAB0AB
15 14 biantrurd A0AB0<BAB1AB0ABAB1
16 recn BB
17 16 ad2antrl A0AB0<BB
18 17 mulridd A0AB0<BB1=B
19 18 breq2d A0AB0<BAB1AB
20 7 15 19 3bitr3d A0AB0<BAB0ABAB1AB
21 3 20 bitrid A0AB0<BAB01AB