Metamath Proof Explorer


Theorem lincmb01cmp

Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 8-Sep-2015)

Ref Expression
Assertion lincmb01cmp ABA<BT011TA+TBAB

Proof

Step Hyp Ref Expression
1 simpr ABA<BT01T01
2 0red ABA<BT010
3 1red ABA<BT011
4 elicc01 T01T0TT1
5 4 simp1bi T01T
6 5 adantl ABA<BT01T
7 difrp ABA<BBA+
8 7 biimp3a ABA<BBA+
9 8 adantr ABA<BT01BA+
10 eqid 0BA=0BA
11 eqid 1BA=1BA
12 10 11 iccdil 01TBA+T01TBA0BA1BA
13 2 3 6 9 12 syl22anc ABA<BT01T01TBA0BA1BA
14 1 13 mpbid ABA<BT01TBA0BA1BA
15 simpl2 ABA<BT01B
16 simpl1 ABA<BT01A
17 15 16 resubcld ABA<BT01BA
18 17 recnd ABA<BT01BA
19 18 mul02d ABA<BT010BA=0
20 18 mullidd ABA<BT011BA=BA
21 19 20 oveq12d ABA<BT010BA1BA=0BA
22 14 21 eleqtrd ABA<BT01TBA0BA
23 6 17 remulcld ABA<BT01TBA
24 eqid 0+A=0+A
25 eqid B-A+A=B-A+A
26 24 25 iccshftr 0BATBAATBA0BATBA+A0+AB-A+A
27 2 17 23 16 26 syl22anc ABA<BT01TBA0BATBA+A0+AB-A+A
28 22 27 mpbid ABA<BT01TBA+A0+AB-A+A
29 6 recnd ABA<BT01T
30 15 recnd ABA<BT01B
31 29 30 mulcld ABA<BT01TB
32 16 recnd ABA<BT01A
33 29 32 mulcld ABA<BT01TA
34 31 33 32 subadd23d ABA<BT01TB-TA+A=TB+A-TA
35 29 30 32 subdid ABA<BT01TBA=TBTA
36 35 oveq1d ABA<BT01TBA+A=TB-TA+A
37 1re 1
38 resubcl 1T1T
39 37 6 38 sylancr ABA<BT011T
40 39 16 remulcld ABA<BT011TA
41 40 recnd ABA<BT011TA
42 41 31 addcomd ABA<BT011TA+TB=TB+1TA
43 1cnd ABA<BT011
44 43 29 32 subdird ABA<BT011TA=1ATA
45 32 mullidd ABA<BT011A=A
46 45 oveq1d ABA<BT011ATA=ATA
47 44 46 eqtrd ABA<BT011TA=ATA
48 47 oveq2d ABA<BT01TB+1TA=TB+A-TA
49 42 48 eqtrd ABA<BT011TA+TB=TB+A-TA
50 34 36 49 3eqtr4d ABA<BT01TBA+A=1TA+TB
51 32 addlidd ABA<BT010+A=A
52 30 32 npcand ABA<BT01B-A+A=B
53 51 52 oveq12d ABA<BT010+AB-A+A=AB
54 28 50 53 3eltr3d ABA<BT011TA+TBAB