Description: A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 8-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lincmb01cmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | 0red | |
|
3 | 1red | |
|
4 | elicc01 | |
|
5 | 4 | simp1bi | |
6 | 5 | adantl | |
7 | difrp | |
|
8 | 7 | biimp3a | |
9 | 8 | adantr | |
10 | eqid | |
|
11 | eqid | |
|
12 | 10 11 | iccdil | |
13 | 2 3 6 9 12 | syl22anc | |
14 | 1 13 | mpbid | |
15 | simpl2 | |
|
16 | simpl1 | |
|
17 | 15 16 | resubcld | |
18 | 17 | recnd | |
19 | 18 | mul02d | |
20 | 18 | mullidd | |
21 | 19 20 | oveq12d | |
22 | 14 21 | eleqtrd | |
23 | 6 17 | remulcld | |
24 | eqid | |
|
25 | eqid | |
|
26 | 24 25 | iccshftr | |
27 | 2 17 23 16 26 | syl22anc | |
28 | 22 27 | mpbid | |
29 | 6 | recnd | |
30 | 15 | recnd | |
31 | 29 30 | mulcld | |
32 | 16 | recnd | |
33 | 29 32 | mulcld | |
34 | 31 33 32 | subadd23d | |
35 | 29 30 32 | subdid | |
36 | 35 | oveq1d | |
37 | 1re | |
|
38 | resubcl | |
|
39 | 37 6 38 | sylancr | |
40 | 39 16 | remulcld | |
41 | 40 | recnd | |
42 | 41 31 | addcomd | |
43 | 1cnd | |
|
44 | 43 29 32 | subdird | |
45 | 32 | mullidd | |
46 | 45 | oveq1d | |
47 | 44 46 | eqtrd | |
48 | 47 | oveq2d | |
49 | 42 48 | eqtrd | |
50 | 34 36 49 | 3eqtr4d | |
51 | 32 | addlidd | |
52 | 30 32 | npcand | |
53 | 51 52 | oveq12d | |
54 | 28 50 53 | 3eltr3d | |