Metamath Proof Explorer


Theorem iccf1o

Description: Describe a bijection from [ 0 , 1 ] to an arbitrary nontrivial closed interval [ A , B ] . (Contributed by Mario Carneiro, 8-Sep-2015)

Ref Expression
Hypothesis iccf1o.1 F=x01xB+1xA
Assertion iccf1o ABA<BF:011-1 ontoABF-1=yAByABA

Proof

Step Hyp Ref Expression
1 iccf1o.1 F=x01xB+1xA
2 elicc01 x01x0xx1
3 2 simp1bi x01x
4 3 adantl ABA<Bx01x
5 4 recnd ABA<Bx01x
6 simpl2 ABA<Bx01B
7 6 recnd ABA<Bx01B
8 5 7 mulcld ABA<Bx01xB
9 ax-1cn 1
10 subcl 1x1x
11 9 5 10 sylancr ABA<Bx011x
12 simpl1 ABA<Bx01A
13 12 recnd ABA<Bx01A
14 11 13 mulcld ABA<Bx011xA
15 8 14 addcomd ABA<Bx01xB+1xA=1xA+xB
16 lincmb01cmp ABA<Bx011xA+xBAB
17 15 16 eqeltrd ABA<Bx01xB+1xAAB
18 simpr ABA<ByAByAB
19 simpl1 ABA<ByABA
20 simpl2 ABA<ByABB
21 elicc2 AByAByAyyB
22 21 3adant3 ABA<ByAByAyyB
23 22 biimpa ABA<ByAByAyyB
24 23 simp1d ABA<ByABy
25 eqid AA=AA
26 eqid BA=BA
27 25 26 iccshftl AByAyAByAAABA
28 19 20 24 19 27 syl22anc ABA<ByAByAByAAABA
29 18 28 mpbid ABA<ByAByAAABA
30 24 19 resubcld ABA<ByAByA
31 30 recnd ABA<ByAByA
32 difrp ABA<BBA+
33 32 biimp3a ABA<BBA+
34 33 adantr ABA<ByABBA+
35 34 rpcnd ABA<ByABBA
36 34 rpne0d ABA<ByABBA0
37 31 35 36 divcan1d ABA<ByAByABABA=yA
38 35 mul02d ABA<ByAB0BA=0
39 19 recnd ABA<ByABA
40 39 subidd ABA<ByABAA=0
41 38 40 eqtr4d ABA<ByAB0BA=AA
42 35 mullidd ABA<ByAB1BA=BA
43 41 42 oveq12d ABA<ByAB0BA1BA=AABA
44 29 37 43 3eltr4d ABA<ByAByABABA0BA1BA
45 0red ABA<ByAB0
46 1red ABA<ByAB1
47 30 34 rerpdivcld ABA<ByAByABA
48 eqid 0BA=0BA
49 eqid 1BA=1BA
50 48 49 iccdil 01yABABA+yABA01yABABA0BA1BA
51 45 46 47 34 50 syl22anc ABA<ByAByABA01yABABA0BA1BA
52 44 51 mpbird ABA<ByAByABA01
53 eqcom x=yABAyABA=x
54 31 adantrl ABA<Bx01yAByA
55 5 adantrr ABA<Bx01yABx
56 35 adantrl ABA<Bx01yABBA
57 36 adantrl ABA<Bx01yABBA0
58 54 55 56 57 divmul3d ABA<Bx01yAByABA=xyA=xBA
59 53 58 bitrid ABA<Bx01yABx=yABAyA=xBA
60 24 adantrl ABA<Bx01yABy
61 60 recnd ABA<Bx01yABy
62 39 adantrl ABA<Bx01yABA
63 6 12 resubcld ABA<Bx01BA
64 4 63 remulcld ABA<Bx01xBA
65 64 adantrr ABA<Bx01yABxBA
66 65 recnd ABA<Bx01yABxBA
67 61 62 66 subadd2d ABA<Bx01yAByA=xBAxBA+A=y
68 eqcom xBA+A=yy=xBA+A
69 67 68 bitrdi ABA<Bx01yAByA=xBAy=xBA+A
70 5 13 mulcld ABA<Bx01xA
71 8 70 13 subadd23d ABA<Bx01xB-xA+A=xB+A-xA
72 5 7 13 subdid ABA<Bx01xBA=xBxA
73 72 oveq1d ABA<Bx01xBA+A=xB-xA+A
74 1cnd ABA<Bx011
75 74 5 13 subdird ABA<Bx011xA=1AxA
76 13 mullidd ABA<Bx011A=A
77 76 oveq1d ABA<Bx011AxA=AxA
78 75 77 eqtrd ABA<Bx011xA=AxA
79 78 oveq2d ABA<Bx01xB+1xA=xB+A-xA
80 71 73 79 3eqtr4d ABA<Bx01xBA+A=xB+1xA
81 80 adantrr ABA<Bx01yABxBA+A=xB+1xA
82 81 eqeq2d ABA<Bx01yABy=xBA+Ay=xB+1xA
83 59 69 82 3bitrd ABA<Bx01yABx=yABAy=xB+1xA
84 1 17 52 83 f1ocnv2d ABA<BF:011-1 ontoABF-1=yAByABA