| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccf1o.1 |
|- F = ( x e. ( 0 [,] 1 ) |-> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
| 2 |
|
elicc01 |
|- ( x e. ( 0 [,] 1 ) <-> ( x e. RR /\ 0 <_ x /\ x <_ 1 ) ) |
| 3 |
2
|
simp1bi |
|- ( x e. ( 0 [,] 1 ) -> x e. RR ) |
| 4 |
3
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> x e. RR ) |
| 5 |
4
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> x e. CC ) |
| 6 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> B e. RR ) |
| 7 |
6
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> B e. CC ) |
| 8 |
5 7
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. B ) e. CC ) |
| 9 |
|
ax-1cn |
|- 1 e. CC |
| 10 |
|
subcl |
|- ( ( 1 e. CC /\ x e. CC ) -> ( 1 - x ) e. CC ) |
| 11 |
9 5 10
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( 1 - x ) e. CC ) |
| 12 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> A e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> A e. CC ) |
| 14 |
11 13
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) e. CC ) |
| 15 |
8 14
|
addcomd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) = ( ( ( 1 - x ) x. A ) + ( x x. B ) ) ) |
| 16 |
|
lincmb01cmp |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( ( 1 - x ) x. A ) + ( x x. B ) ) e. ( A [,] B ) ) |
| 17 |
15 16
|
eqeltrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) e. ( A [,] B ) ) |
| 18 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> y e. ( A [,] B ) ) |
| 19 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> A e. RR ) |
| 20 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> B e. RR ) |
| 21 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
| 22 |
21
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( y e. ( A [,] B ) <-> ( y e. RR /\ A <_ y /\ y <_ B ) ) ) |
| 23 |
22
|
biimpa |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y e. RR /\ A <_ y /\ y <_ B ) ) |
| 24 |
23
|
simp1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> y e. RR ) |
| 25 |
|
eqid |
|- ( A - A ) = ( A - A ) |
| 26 |
|
eqid |
|- ( B - A ) = ( B - A ) |
| 27 |
25 26
|
iccshftl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( y e. RR /\ A e. RR ) ) -> ( y e. ( A [,] B ) <-> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) ) |
| 28 |
19 20 24 19 27
|
syl22anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y e. ( A [,] B ) <-> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) ) |
| 29 |
18 28
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. ( ( A - A ) [,] ( B - A ) ) ) |
| 30 |
24 19
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. RR ) |
| 31 |
30
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( y - A ) e. CC ) |
| 32 |
|
difrp |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
| 33 |
32
|
biimp3a |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ ) |
| 34 |
33
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) e. RR+ ) |
| 35 |
34
|
rpcnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) e. CC ) |
| 36 |
34
|
rpne0d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( B - A ) =/= 0 ) |
| 37 |
31 35 36
|
divcan1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) = ( y - A ) ) |
| 38 |
35
|
mul02d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 0 x. ( B - A ) ) = 0 ) |
| 39 |
19
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> A e. CC ) |
| 40 |
39
|
subidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( A - A ) = 0 ) |
| 41 |
38 40
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 0 x. ( B - A ) ) = ( A - A ) ) |
| 42 |
35
|
mullidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( 1 x. ( B - A ) ) = ( B - A ) ) |
| 43 |
41 42
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) = ( ( A - A ) [,] ( B - A ) ) ) |
| 44 |
29 37 43
|
3eltr4d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) |
| 45 |
|
0red |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> 0 e. RR ) |
| 46 |
|
1red |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> 1 e. RR ) |
| 47 |
30 34
|
rerpdivcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( y - A ) / ( B - A ) ) e. RR ) |
| 48 |
|
eqid |
|- ( 0 x. ( B - A ) ) = ( 0 x. ( B - A ) ) |
| 49 |
|
eqid |
|- ( 1 x. ( B - A ) ) = ( 1 x. ( B - A ) ) |
| 50 |
48 49
|
iccdil |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( ( ( y - A ) / ( B - A ) ) e. RR /\ ( B - A ) e. RR+ ) ) -> ( ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) <-> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 51 |
45 46 47 34 50
|
syl22anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) <-> ( ( ( y - A ) / ( B - A ) ) x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 52 |
44 51
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ y e. ( A [,] B ) ) -> ( ( y - A ) / ( B - A ) ) e. ( 0 [,] 1 ) ) |
| 53 |
|
eqcom |
|- ( x = ( ( y - A ) / ( B - A ) ) <-> ( ( y - A ) / ( B - A ) ) = x ) |
| 54 |
31
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( y - A ) e. CC ) |
| 55 |
5
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> x e. CC ) |
| 56 |
35
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( B - A ) e. CC ) |
| 57 |
36
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( B - A ) =/= 0 ) |
| 58 |
54 55 56 57
|
divmul3d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( ( y - A ) / ( B - A ) ) = x <-> ( y - A ) = ( x x. ( B - A ) ) ) ) |
| 59 |
53 58
|
bitrid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x = ( ( y - A ) / ( B - A ) ) <-> ( y - A ) = ( x x. ( B - A ) ) ) ) |
| 60 |
24
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> y e. RR ) |
| 61 |
60
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> y e. CC ) |
| 62 |
39
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> A e. CC ) |
| 63 |
6 12
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( B - A ) e. RR ) |
| 64 |
4 63
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. ( B - A ) ) e. RR ) |
| 65 |
64
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x x. ( B - A ) ) e. RR ) |
| 66 |
65
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x x. ( B - A ) ) e. CC ) |
| 67 |
61 62 66
|
subadd2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( y - A ) = ( x x. ( B - A ) ) <-> ( ( x x. ( B - A ) ) + A ) = y ) ) |
| 68 |
|
eqcom |
|- ( ( ( x x. ( B - A ) ) + A ) = y <-> y = ( ( x x. ( B - A ) ) + A ) ) |
| 69 |
67 68
|
bitrdi |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( y - A ) = ( x x. ( B - A ) ) <-> y = ( ( x x. ( B - A ) ) + A ) ) ) |
| 70 |
5 13
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. A ) e. CC ) |
| 71 |
8 70 13
|
subadd23d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( ( x x. B ) - ( x x. A ) ) + A ) = ( ( x x. B ) + ( A - ( x x. A ) ) ) ) |
| 72 |
5 7 13
|
subdid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( x x. ( B - A ) ) = ( ( x x. B ) - ( x x. A ) ) ) |
| 73 |
72
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( ( x x. B ) - ( x x. A ) ) + A ) ) |
| 74 |
|
1cnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> 1 e. CC ) |
| 75 |
74 5 13
|
subdird |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) = ( ( 1 x. A ) - ( x x. A ) ) ) |
| 76 |
13
|
mullidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( 1 x. A ) = A ) |
| 77 |
76
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 x. A ) - ( x x. A ) ) = ( A - ( x x. A ) ) ) |
| 78 |
75 77
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( 1 - x ) x. A ) = ( A - ( x x. A ) ) ) |
| 79 |
78
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. B ) + ( ( 1 - x ) x. A ) ) = ( ( x x. B ) + ( A - ( x x. A ) ) ) ) |
| 80 |
71 73 79
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ x e. ( 0 [,] 1 ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
| 81 |
80
|
adantrr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( ( x x. ( B - A ) ) + A ) = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) |
| 82 |
81
|
eqeq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( y = ( ( x x. ( B - A ) ) + A ) <-> y = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) ) |
| 83 |
59 69 82
|
3bitrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ ( x e. ( 0 [,] 1 ) /\ y e. ( A [,] B ) ) ) -> ( x = ( ( y - A ) / ( B - A ) ) <-> y = ( ( x x. B ) + ( ( 1 - x ) x. A ) ) ) ) |
| 84 |
1 17 52 83
|
f1ocnv2d |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) /\ `' F = ( y e. ( A [,] B ) |-> ( ( y - A ) / ( B - A ) ) ) ) ) |