| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> T e. ( 0 [,] 1 ) ) |
| 2 |
|
0red |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> 0 e. RR ) |
| 3 |
|
1red |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
| 4 |
|
elicc01 |
|- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
| 5 |
4
|
simp1bi |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
| 6 |
5
|
adantl |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> T e. RR ) |
| 7 |
|
difrp |
|- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( B - A ) e. RR+ ) ) |
| 8 |
7
|
biimp3a |
|- ( ( A e. RR /\ B e. RR /\ A < B ) -> ( B - A ) e. RR+ ) |
| 9 |
8
|
adantr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( B - A ) e. RR+ ) |
| 10 |
|
eqid |
|- ( 0 x. ( B - A ) ) = ( 0 x. ( B - A ) ) |
| 11 |
|
eqid |
|- ( 1 x. ( B - A ) ) = ( 1 x. ( B - A ) ) |
| 12 |
10 11
|
iccdil |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( T e. RR /\ ( B - A ) e. RR+ ) ) -> ( T e. ( 0 [,] 1 ) <-> ( T x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 13 |
2 3 6 9 12
|
syl22anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T e. ( 0 [,] 1 ) <-> ( T x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) ) |
| 14 |
1 13
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) e. ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) ) |
| 15 |
|
simpl2 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> B e. RR ) |
| 16 |
|
simpl1 |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> A e. RR ) |
| 17 |
15 16
|
resubcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( B - A ) e. RR ) |
| 18 |
17
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( B - A ) e. CC ) |
| 19 |
18
|
mul02d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 0 x. ( B - A ) ) = 0 ) |
| 20 |
18
|
mullidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 1 x. ( B - A ) ) = ( B - A ) ) |
| 21 |
19 20
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 0 x. ( B - A ) ) [,] ( 1 x. ( B - A ) ) ) = ( 0 [,] ( B - A ) ) ) |
| 22 |
14 21
|
eleqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) e. ( 0 [,] ( B - A ) ) ) |
| 23 |
6 17
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) e. RR ) |
| 24 |
|
eqid |
|- ( 0 + A ) = ( 0 + A ) |
| 25 |
|
eqid |
|- ( ( B - A ) + A ) = ( ( B - A ) + A ) |
| 26 |
24 25
|
iccshftr |
|- ( ( ( 0 e. RR /\ ( B - A ) e. RR ) /\ ( ( T x. ( B - A ) ) e. RR /\ A e. RR ) ) -> ( ( T x. ( B - A ) ) e. ( 0 [,] ( B - A ) ) <-> ( ( T x. ( B - A ) ) + A ) e. ( ( 0 + A ) [,] ( ( B - A ) + A ) ) ) ) |
| 27 |
2 17 23 16 26
|
syl22anc |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) e. ( 0 [,] ( B - A ) ) <-> ( ( T x. ( B - A ) ) + A ) e. ( ( 0 + A ) [,] ( ( B - A ) + A ) ) ) ) |
| 28 |
22 27
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) + A ) e. ( ( 0 + A ) [,] ( ( B - A ) + A ) ) ) |
| 29 |
6
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> T e. CC ) |
| 30 |
15
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> B e. CC ) |
| 31 |
29 30
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. B ) e. CC ) |
| 32 |
16
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> A e. CC ) |
| 33 |
29 32
|
mulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. A ) e. CC ) |
| 34 |
31 33 32
|
subadd23d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( T x. B ) - ( T x. A ) ) + A ) = ( ( T x. B ) + ( A - ( T x. A ) ) ) ) |
| 35 |
29 30 32
|
subdid |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( T x. ( B - A ) ) = ( ( T x. B ) - ( T x. A ) ) ) |
| 36 |
35
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) + A ) = ( ( ( T x. B ) - ( T x. A ) ) + A ) ) |
| 37 |
|
1re |
|- 1 e. RR |
| 38 |
|
resubcl |
|- ( ( 1 e. RR /\ T e. RR ) -> ( 1 - T ) e. RR ) |
| 39 |
37 6 38
|
sylancr |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 1 - T ) e. RR ) |
| 40 |
39 16
|
remulcld |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) e. RR ) |
| 41 |
40
|
recnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) e. CC ) |
| 42 |
41 31
|
addcomd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) = ( ( T x. B ) + ( ( 1 - T ) x. A ) ) ) |
| 43 |
|
1cnd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> 1 e. CC ) |
| 44 |
43 29 32
|
subdird |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) = ( ( 1 x. A ) - ( T x. A ) ) ) |
| 45 |
32
|
mullidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 1 x. A ) = A ) |
| 46 |
45
|
oveq1d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 x. A ) - ( T x. A ) ) = ( A - ( T x. A ) ) ) |
| 47 |
44 46
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 1 - T ) x. A ) = ( A - ( T x. A ) ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. B ) + ( ( 1 - T ) x. A ) ) = ( ( T x. B ) + ( A - ( T x. A ) ) ) ) |
| 49 |
42 48
|
eqtrd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) = ( ( T x. B ) + ( A - ( T x. A ) ) ) ) |
| 50 |
34 36 49
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( T x. ( B - A ) ) + A ) = ( ( ( 1 - T ) x. A ) + ( T x. B ) ) ) |
| 51 |
32
|
addlidd |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( 0 + A ) = A ) |
| 52 |
30 32
|
npcand |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( B - A ) + A ) = B ) |
| 53 |
51 52
|
oveq12d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( 0 + A ) [,] ( ( B - A ) + A ) ) = ( A [,] B ) ) |
| 54 |
28 50 53
|
3eltr3d |
|- ( ( ( A e. RR /\ B e. RR /\ A < B ) /\ T e. ( 0 [,] 1 ) ) -> ( ( ( 1 - T ) x. A ) + ( T x. B ) ) e. ( A [,] B ) ) |