| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccshftl.1 |
|- ( A - R ) = C |
| 2 |
|
iccshftl.2 |
|- ( B - R ) = D |
| 3 |
|
simpl |
|- ( ( X e. RR /\ R e. RR ) -> X e. RR ) |
| 4 |
|
resubcl |
|- ( ( X e. RR /\ R e. RR ) -> ( X - R ) e. RR ) |
| 5 |
3 4
|
2thd |
|- ( ( X e. RR /\ R e. RR ) -> ( X e. RR <-> ( X - R ) e. RR ) ) |
| 6 |
5
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. RR <-> ( X - R ) e. RR ) ) |
| 7 |
|
lesub1 |
|- ( ( A e. RR /\ X e. RR /\ R e. RR ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) |
| 8 |
7
|
3expb |
|- ( ( A e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) |
| 9 |
8
|
adantlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> ( A - R ) <_ ( X - R ) ) ) |
| 10 |
1
|
breq1i |
|- ( ( A - R ) <_ ( X - R ) <-> C <_ ( X - R ) ) |
| 11 |
9 10
|
bitrdi |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( A <_ X <-> C <_ ( X - R ) ) ) |
| 12 |
|
lesub1 |
|- ( ( X e. RR /\ B e. RR /\ R e. RR ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
| 13 |
12
|
3expb |
|- ( ( X e. RR /\ ( B e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
| 14 |
13
|
an12s |
|- ( ( B e. RR /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
| 15 |
14
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ ( B - R ) ) ) |
| 16 |
2
|
breq2i |
|- ( ( X - R ) <_ ( B - R ) <-> ( X - R ) <_ D ) |
| 17 |
15 16
|
bitrdi |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X <_ B <-> ( X - R ) <_ D ) ) |
| 18 |
6 11 17
|
3anbi123d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X e. RR /\ A <_ X /\ X <_ B ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 19 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 20 |
19
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 21 |
|
resubcl |
|- ( ( A e. RR /\ R e. RR ) -> ( A - R ) e. RR ) |
| 22 |
1 21
|
eqeltrrid |
|- ( ( A e. RR /\ R e. RR ) -> C e. RR ) |
| 23 |
|
resubcl |
|- ( ( B e. RR /\ R e. RR ) -> ( B - R ) e. RR ) |
| 24 |
2 23
|
eqeltrrid |
|- ( ( B e. RR /\ R e. RR ) -> D e. RR ) |
| 25 |
|
elicc2 |
|- ( ( C e. RR /\ D e. RR ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 26 |
22 24 25
|
syl2an |
|- ( ( ( A e. RR /\ R e. RR ) /\ ( B e. RR /\ R e. RR ) ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 27 |
26
|
anandirs |
|- ( ( ( A e. RR /\ B e. RR ) /\ R e. RR ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 28 |
27
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( ( X - R ) e. ( C [,] D ) <-> ( ( X - R ) e. RR /\ C <_ ( X - R ) /\ ( X - R ) <_ D ) ) ) |
| 29 |
18 20 28
|
3bitr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR ) ) -> ( X e. ( A [,] B ) <-> ( X - R ) e. ( C [,] D ) ) ) |