Step |
Hyp |
Ref |
Expression |
1 |
|
fveere |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
2 |
1
|
adantlr |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. RR ) |
3 |
|
fveere |
|- ( ( B e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
4 |
3
|
adantll |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. RR ) |
5 |
2 4
|
resubcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. RR ) |
6 |
5
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) - ( B ` i ) ) e. CC ) |
7 |
|
sqeq0 |
|- ( ( ( A ` i ) - ( B ` i ) ) e. CC -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( ( A ` i ) - ( B ` i ) ) = 0 ) ) |
8 |
6 7
|
syl |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( ( A ` i ) - ( B ` i ) ) = 0 ) ) |
9 |
2
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
10 |
4
|
recnd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( B ` i ) e. CC ) |
11 |
9 10
|
subeq0ad |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
12 |
8 11
|
bitrd |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> ( A ` i ) = ( B ` i ) ) ) |
13 |
12
|
ralbidva |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A. i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
14 |
|
fzfid |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( 1 ... N ) e. Fin ) |
15 |
5
|
resqcld |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) e. RR ) |
16 |
5
|
sqge0d |
|- ( ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) /\ i e. ( 1 ... N ) ) -> 0 <_ ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) ) |
17 |
14 15 16
|
fsum00 |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 <-> A. i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 ) ) |
18 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
19 |
13 17 18
|
3bitr4rd |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> sum_ i e. ( 1 ... N ) ( ( ( A ` i ) - ( B ` i ) ) ^ 2 ) = 0 ) ) |