| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveere |  | 
						
							| 2 | 1 | 3ad2antl1 |  | 
						
							| 3 |  | fveere |  | 
						
							| 4 | 3 | 3ad2antl2 |  | 
						
							| 5 |  | fveere |  | 
						
							| 6 | 5 | 3ad2antl3 |  | 
						
							| 7 | 4 6 | resubcld |  | 
						
							| 8 | 2 7 | resubcld |  | 
						
							| 9 | 8 | ralrimiva |  | 
						
							| 10 |  | eleenn |  | 
						
							| 11 |  | mptelee |  | 
						
							| 12 | 10 11 | syl |  | 
						
							| 13 | 12 | 3ad2ant1 |  | 
						
							| 14 | 9 13 | mpbird |  | 
						
							| 15 |  | fveecn |  | 
						
							| 16 | 15 | 3ad2antl1 |  | 
						
							| 17 |  | fveecn |  | 
						
							| 18 | 17 | 3ad2antl2 |  | 
						
							| 19 |  | fveecn |  | 
						
							| 20 | 19 | 3ad2antl3 |  | 
						
							| 21 |  | 1m0e1 |  | 
						
							| 22 | 21 | oveq1i |  | 
						
							| 23 |  | mullid |  | 
						
							| 24 | 23 | 3ad2ant1 |  | 
						
							| 25 | 22 24 | eqtrid |  | 
						
							| 26 |  | subcl |  | 
						
							| 27 |  | subcl |  | 
						
							| 28 | 26 27 | sylan2 |  | 
						
							| 29 | 28 | 3impb |  | 
						
							| 30 | 29 | mul02d |  | 
						
							| 31 | 25 30 | oveq12d |  | 
						
							| 32 |  | addrid |  | 
						
							| 33 | 32 | 3ad2ant1 |  | 
						
							| 34 | 31 33 | eqtr2d |  | 
						
							| 35 | 16 18 20 34 | syl3anc |  | 
						
							| 36 | 35 | ralrimiva |  | 
						
							| 37 | 18 20 | subcld |  | 
						
							| 38 | 16 37 | nncand |  | 
						
							| 39 | 38 | oveq1d |  | 
						
							| 40 | 39 | sumeq2dv |  | 
						
							| 41 |  | 0elunit |  | 
						
							| 42 |  | fveq1 |  | 
						
							| 43 |  | fveq2 |  | 
						
							| 44 |  | fveq2 |  | 
						
							| 45 |  | fveq2 |  | 
						
							| 46 | 44 45 | oveq12d |  | 
						
							| 47 | 43 46 | oveq12d |  | 
						
							| 48 |  | eqid |  | 
						
							| 49 |  | ovex |  | 
						
							| 50 | 47 48 49 | fvmpt |  | 
						
							| 51 | 42 50 | sylan9eq |  | 
						
							| 52 | 51 | oveq2d |  | 
						
							| 53 | 52 | oveq2d |  | 
						
							| 54 | 53 | eqeq2d |  | 
						
							| 55 | 54 | ralbidva |  | 
						
							| 56 | 51 | oveq2d |  | 
						
							| 57 | 56 | oveq1d |  | 
						
							| 58 | 57 | sumeq2dv |  | 
						
							| 59 | 58 | eqeq1d |  | 
						
							| 60 | 55 59 | anbi12d |  | 
						
							| 61 |  | oveq2 |  | 
						
							| 62 | 61 | oveq1d |  | 
						
							| 63 |  | oveq1 |  | 
						
							| 64 | 62 63 | oveq12d |  | 
						
							| 65 | 64 | eqeq2d |  | 
						
							| 66 | 65 | ralbidv |  | 
						
							| 67 | 66 | anbi1d |  | 
						
							| 68 | 60 67 | rspc2ev |  | 
						
							| 69 | 41 68 | mp3an2 |  | 
						
							| 70 | 14 36 40 69 | syl12anc |  | 
						
							| 71 | 70 | 3expb |  | 
						
							| 72 | 71 | adantll |  | 
						
							| 73 |  | fveq1 |  | 
						
							| 74 | 73 | oveq2d |  | 
						
							| 75 | 74 | oveq1d |  | 
						
							| 76 | 75 | eqeq2d |  | 
						
							| 77 | 76 | ralbidv |  | 
						
							| 78 | 77 | anbi1d |  | 
						
							| 79 | 78 | 2rexbidv |  | 
						
							| 80 | 72 79 | imbitrrid |  | 
						
							| 81 | 80 | imp |  |