Metamath Proof Explorer


Theorem axsegconlem1

Description: Lemma for axsegcon . Handle the degenerate case. (Contributed by Scott Fenton, 7-Jun-2013)

Ref Expression
Assertion axsegconlem1 A = B A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N t 0 1 i 1 N B i = 1 t A i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2

Proof

Step Hyp Ref Expression
1 fveere B 𝔼 N k 1 N B k
2 1 3ad2antl1 B 𝔼 N C 𝔼 N D 𝔼 N k 1 N B k
3 fveere C 𝔼 N k 1 N C k
4 3 3ad2antl2 B 𝔼 N C 𝔼 N D 𝔼 N k 1 N C k
5 fveere D 𝔼 N k 1 N D k
6 5 3ad2antl3 B 𝔼 N C 𝔼 N D 𝔼 N k 1 N D k
7 4 6 resubcld B 𝔼 N C 𝔼 N D 𝔼 N k 1 N C k D k
8 2 7 resubcld B 𝔼 N C 𝔼 N D 𝔼 N k 1 N B k C k D k
9 8 ralrimiva B 𝔼 N C 𝔼 N D 𝔼 N k 1 N B k C k D k
10 eleenn B 𝔼 N N
11 mptelee N k 1 N B k C k D k 𝔼 N k 1 N B k C k D k
12 10 11 syl B 𝔼 N k 1 N B k C k D k 𝔼 N k 1 N B k C k D k
13 12 3ad2ant1 B 𝔼 N C 𝔼 N D 𝔼 N k 1 N B k C k D k 𝔼 N k 1 N B k C k D k
14 9 13 mpbird B 𝔼 N C 𝔼 N D 𝔼 N k 1 N B k C k D k 𝔼 N
15 fveecn B 𝔼 N i 1 N B i
16 15 3ad2antl1 B 𝔼 N C 𝔼 N D 𝔼 N i 1 N B i
17 fveecn C 𝔼 N i 1 N C i
18 17 3ad2antl2 B 𝔼 N C 𝔼 N D 𝔼 N i 1 N C i
19 fveecn D 𝔼 N i 1 N D i
20 19 3ad2antl3 B 𝔼 N C 𝔼 N D 𝔼 N i 1 N D i
21 1m0e1 1 0 = 1
22 21 oveq1i 1 0 B i = 1 B i
23 mulid2 B i 1 B i = B i
24 23 3ad2ant1 B i C i D i 1 B i = B i
25 22 24 syl5eq B i C i D i 1 0 B i = B i
26 subcl C i D i C i D i
27 subcl B i C i D i B i C i D i
28 26 27 sylan2 B i C i D i B i C i D i
29 28 3impb B i C i D i B i C i D i
30 29 mul02d B i C i D i 0 B i C i D i = 0
31 25 30 oveq12d B i C i D i 1 0 B i + 0 B i C i D i = B i + 0
32 addid1 B i B i + 0 = B i
33 32 3ad2ant1 B i C i D i B i + 0 = B i
34 31 33 eqtr2d B i C i D i B i = 1 0 B i + 0 B i C i D i
35 16 18 20 34 syl3anc B 𝔼 N C 𝔼 N D 𝔼 N i 1 N B i = 1 0 B i + 0 B i C i D i
36 35 ralrimiva B 𝔼 N C 𝔼 N D 𝔼 N i 1 N B i = 1 0 B i + 0 B i C i D i
37 18 20 subcld B 𝔼 N C 𝔼 N D 𝔼 N i 1 N C i D i
38 16 37 nncand B 𝔼 N C 𝔼 N D 𝔼 N i 1 N B i B i C i D i = C i D i
39 38 oveq1d B 𝔼 N C 𝔼 N D 𝔼 N i 1 N B i B i C i D i 2 = C i D i 2
40 39 sumeq2dv B 𝔼 N C 𝔼 N D 𝔼 N i = 1 N B i B i C i D i 2 = i = 1 N C i D i 2
41 0elunit 0 0 1
42 fveq1 x = k 1 N B k C k D k x i = k 1 N B k C k D k i
43 fveq2 k = i B k = B i
44 fveq2 k = i C k = C i
45 fveq2 k = i D k = D i
46 44 45 oveq12d k = i C k D k = C i D i
47 43 46 oveq12d k = i B k C k D k = B i C i D i
48 eqid k 1 N B k C k D k = k 1 N B k C k D k
49 ovex B i C i D i V
50 47 48 49 fvmpt i 1 N k 1 N B k C k D k i = B i C i D i
51 42 50 sylan9eq x = k 1 N B k C k D k i 1 N x i = B i C i D i
52 51 oveq2d x = k 1 N B k C k D k i 1 N t x i = t B i C i D i
53 52 oveq2d x = k 1 N B k C k D k i 1 N 1 t B i + t x i = 1 t B i + t B i C i D i
54 53 eqeq2d x = k 1 N B k C k D k i 1 N B i = 1 t B i + t x i B i = 1 t B i + t B i C i D i
55 54 ralbidva x = k 1 N B k C k D k i 1 N B i = 1 t B i + t x i i 1 N B i = 1 t B i + t B i C i D i
56 51 oveq2d x = k 1 N B k C k D k i 1 N B i x i = B i B i C i D i
57 56 oveq1d x = k 1 N B k C k D k i 1 N B i x i 2 = B i B i C i D i 2
58 57 sumeq2dv x = k 1 N B k C k D k i = 1 N B i x i 2 = i = 1 N B i B i C i D i 2
59 58 eqeq1d x = k 1 N B k C k D k i = 1 N B i x i 2 = i = 1 N C i D i 2 i = 1 N B i B i C i D i 2 = i = 1 N C i D i 2
60 55 59 anbi12d x = k 1 N B k C k D k i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2 i 1 N B i = 1 t B i + t B i C i D i i = 1 N B i B i C i D i 2 = i = 1 N C i D i 2
61 oveq2 t = 0 1 t = 1 0
62 61 oveq1d t = 0 1 t B i = 1 0 B i
63 oveq1 t = 0 t B i C i D i = 0 B i C i D i
64 62 63 oveq12d t = 0 1 t B i + t B i C i D i = 1 0 B i + 0 B i C i D i
65 64 eqeq2d t = 0 B i = 1 t B i + t B i C i D i B i = 1 0 B i + 0 B i C i D i
66 65 ralbidv t = 0 i 1 N B i = 1 t B i + t B i C i D i i 1 N B i = 1 0 B i + 0 B i C i D i
67 66 anbi1d t = 0 i 1 N B i = 1 t B i + t B i C i D i i = 1 N B i B i C i D i 2 = i = 1 N C i D i 2 i 1 N B i = 1 0 B i + 0 B i C i D i i = 1 N B i B i C i D i 2 = i = 1 N C i D i 2
68 60 67 rspc2ev k 1 N B k C k D k 𝔼 N 0 0 1 i 1 N B i = 1 0 B i + 0 B i C i D i i = 1 N B i B i C i D i 2 = i = 1 N C i D i 2 x 𝔼 N t 0 1 i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
69 41 68 mp3an2 k 1 N B k C k D k 𝔼 N i 1 N B i = 1 0 B i + 0 B i C i D i i = 1 N B i B i C i D i 2 = i = 1 N C i D i 2 x 𝔼 N t 0 1 i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
70 14 36 40 69 syl12anc B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N t 0 1 i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
71 70 3expb B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N t 0 1 i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
72 71 adantll A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N t 0 1 i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
73 fveq1 A = B A i = B i
74 73 oveq2d A = B 1 t A i = 1 t B i
75 74 oveq1d A = B 1 t A i + t x i = 1 t B i + t x i
76 75 eqeq2d A = B B i = 1 t A i + t x i B i = 1 t B i + t x i
77 76 ralbidv A = B i 1 N B i = 1 t A i + t x i i 1 N B i = 1 t B i + t x i
78 77 anbi1d A = B i 1 N B i = 1 t A i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2 i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
79 78 2rexbidv A = B x 𝔼 N t 0 1 i 1 N B i = 1 t A i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2 x 𝔼 N t 0 1 i 1 N B i = 1 t B i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
80 72 79 syl5ibr A = B A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N t 0 1 i 1 N B i = 1 t A i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2
81 80 imp A = B A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N t 0 1 i 1 N B i = 1 t A i + t x i i = 1 N B i x i 2 = i = 1 N C i D i 2