Step |
Hyp |
Ref |
Expression |
1 |
|
fveecn |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 ‘ 𝑖 ) ∈ ℂ ) |
2 |
|
fveecn |
⊢ ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) |
3 |
|
sqsubswap |
⊢ ( ( ( 𝐴 ‘ 𝑖 ) ∈ ℂ ∧ ( 𝐵 ‘ 𝑖 ) ∈ ℂ ) → ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) ) → ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
5 |
4
|
anandirs |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ 𝑖 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
6 |
5
|
sumeq2dv |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) |
7 |
|
id |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) |
9 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) |
10 |
|
brcgr |
⊢ ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
11 |
7 8 9 10
|
syl12anc |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ↔ Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐴 ‘ 𝑖 ) − ( 𝐵 ‘ 𝑖 ) ) ↑ 2 ) = Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( ( ( 𝐵 ‘ 𝑖 ) − ( 𝐴 ‘ 𝑖 ) ) ↑ 2 ) ) ) |
12 |
6 11
|
mpbird |
⊢ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) |
13 |
12
|
3adant1 |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) → 〈 𝐴 , 𝐵 〉 Cgr 〈 𝐵 , 𝐴 〉 ) |