Metamath Proof Explorer


Theorem cgrrflx2d

Description: Deduction form of axcgrrflx . (Contributed by Scott Fenton, 13-Oct-2013)

Ref Expression
Hypotheses cgrrflx2d.1 φ N
cgrrflx2d.2 φ A 𝔼 N
cgrrflx2d.3 φ B 𝔼 N
Assertion cgrrflx2d φ A B Cgr B A

Proof

Step Hyp Ref Expression
1 cgrrflx2d.1 φ N
2 cgrrflx2d.2 φ A 𝔼 N
3 cgrrflx2d.3 φ B 𝔼 N
4 axcgrrflx N A 𝔼 N B 𝔼 N A B Cgr B A
5 1 2 3 4 syl3anc φ A B Cgr B A