Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Geometry in the Euclidean space
Congruence properties
cgrtr4d
Next ⟩
cgrtr4and
Metamath Proof Explorer
Ascii
Unicode
Theorem
cgrtr4d
Description:
Deduction form of
axcgrtr
.
(Contributed by
Scott Fenton
, 13-Oct-2013)
Ref
Expression
Hypotheses
cgrtr4d.1
⊢
φ
→
N
∈
ℕ
cgrtr4d.2
⊢
φ
→
A
∈
𝔼
⁡
N
cgrtr4d.3
⊢
φ
→
B
∈
𝔼
⁡
N
cgrtr4d.4
⊢
φ
→
C
∈
𝔼
⁡
N
cgrtr4d.5
⊢
φ
→
D
∈
𝔼
⁡
N
cgrtr4d.6
⊢
φ
→
E
∈
𝔼
⁡
N
cgrtr4d.7
⊢
φ
→
F
∈
𝔼
⁡
N
cgrtr4d.8
⊢
φ
→
A
B
Cgr
C
D
cgrtr4d.9
⊢
φ
→
A
B
Cgr
E
F
Assertion
cgrtr4d
⊢
φ
→
C
D
Cgr
E
F
Proof
Step
Hyp
Ref
Expression
1
cgrtr4d.1
⊢
φ
→
N
∈
ℕ
2
cgrtr4d.2
⊢
φ
→
A
∈
𝔼
⁡
N
3
cgrtr4d.3
⊢
φ
→
B
∈
𝔼
⁡
N
4
cgrtr4d.4
⊢
φ
→
C
∈
𝔼
⁡
N
5
cgrtr4d.5
⊢
φ
→
D
∈
𝔼
⁡
N
6
cgrtr4d.6
⊢
φ
→
E
∈
𝔼
⁡
N
7
cgrtr4d.7
⊢
φ
→
F
∈
𝔼
⁡
N
8
cgrtr4d.8
⊢
φ
→
A
B
Cgr
C
D
9
cgrtr4d.9
⊢
φ
→
A
B
Cgr
E
F
10
axcgrtr
⊢
N
∈
ℕ
∧
A
∈
𝔼
⁡
N
∧
B
∈
𝔼
⁡
N
∧
C
∈
𝔼
⁡
N
∧
D
∈
𝔼
⁡
N
∧
E
∈
𝔼
⁡
N
∧
F
∈
𝔼
⁡
N
→
A
B
Cgr
C
D
∧
A
B
Cgr
E
F
→
C
D
Cgr
E
F
11
1
2
3
4
5
6
7
10
syl133anc
⊢
φ
→
A
B
Cgr
C
D
∧
A
B
Cgr
E
F
→
C
D
Cgr
E
F
12
8
9
11
mp2and
⊢
φ
→
C
D
Cgr
E
F